Photonics Research, 2020, 8 (5): 05000630, Published Online: Apr. 15, 2020   

Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist Download: 1195次

Author Affiliations
1 Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Chiao Tung University, Hsinchu 30010, China
2 Institute of Photonic System, Taiwan Chiao Tung University, Tainan 71150, China
3 Saphlux Inc., Branford, Connecticut 06405, USA
4 Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
5 Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
6 e-mail: wutingzhu@xmu.edu.cn
7 e-mail: hckuo@faculty.nctu.edu.tw
Copy Citation Text

Sung-Wen Huang Chen, Yu-Ming Huang, Konthoujam James Singh, Yu-Chien Hsu, Fang-Jyun Liou, Jie Song, Joowon Choi, Po-Tsung Lee, Chien-Chung Lin, Zhong Chen, Jung Han, Tingzhu Wu, Hao-Chung Kuo. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist[J]. Photonics Research, 2020, 8(5): 05000630.

References

[1] Z. J. Liu, W. C. Chong, K. M. Wong, K. M. Lau. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays. J. Disp. Technol., 2013, 9: 490-496.

[2] Z. Gong, E. Gu, S. R. Jin, D. Massoubre, B. Guilhabert, H. X. Zhang, M. D. Dawson, V. Poher, G. T. Kennedy, P. M. W. French, M. A. A. Neil. Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion. J. Phys. D, 2008, 41: 094002.

[3] T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. H. Chen, W. Guo, H.-C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 2018, 8: 1557.

[4] G. J. Tan, Y. G. Huang, M. C. Li, S. L. Lee, S. T. Wu. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express, 2018, 26: 16572-16584.

[5] Y. Huang, G. Tan, F. Gou, M. C. Li, S. L. Lee, S. T. Wu. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp., 2019, 27: 387-401.

[6] C.-H. Lin, A. Verma, C.-Y. Kang, Y.-M. Pai, T.-Y. Chen, J.-J. Yang, C.-W. Sher, Y.-Z. Yang, P.-T. Lee, C.-C. Lin, Y.-C. Wu, S. K. Sharma, T. Wu, S.-R. Chung, H.-C. Kuo. Hybrid-type white LEDs based on inorganic halide perovskite QDs: candidates for wide color gamut display backlights. Photon. Res., 2019, 7: 579-585.

[7] H.-S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, J. A. Rogers. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl. Acad. Sci. USA, 2011, 108: 10072-10077.

[8] V. Marinov, O. Swenson, R. Miller, F. Sarwar, Y. Atanasov, M. Semler, S. Datta. Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates. IEEE Trans. Compon. Packag. Technol., 2012, 2: 569-577.

[9] K. Ding, V. Avrutin, N. Izyumskaya, U. Ozgur, H. Morkoc. Micro-LEDs, a manufacturability perspective. Appl. Sci., 2019, 9: 1206.

[10] MeitlM.RadauscherE.BonafedeS.GomezD.MooreT.PrevatteC.RaymondB.FisherB.GhosalK.FecioruA., “Passive matrix displays with transfer-printed microscale inorganic LEDs,” in SID Symposium Digest of Technical Papers (Wiley, 2016), pp. 743746.

[11] L. Zhang, F. Ou, W. C. Chong, Y. Chen, Q. Li. Wafer-scale monolithic hybrid integration of Si-based IC and III-V epi-layers--a mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp., 2018, 26: 137-145.

[12] R. S. Cok, M. Meitl, R. Rotzoll, G. Melnik, A. Fecioru, A. J. Trindade, B. Raymond, S. Bonafede, D. Gomez, T. Moore, C. Prevatte, E. Radauscher, S. Goodwin, P. Hines, C. A. Bower. Inorganic light-emitting diode displays using micro-transfer printing. J. Soc. Inf. Disp., 2017, 25: 589-609.

[13] H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, K.-M. Lau, H.-C. Kuo. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express, 2015, 23: 32504-32515.

[14] S.-W. Huang Chen, C.-C. Shen, T. Wu, Z.-Y. Liao, L.-F. Chen, J.-R. Zhou, C.-F. Lee, C.-H. Lin, C.-C. Lin, C.-W. Sher, P.-T. Lee, A.-J. Tzou, Z. Chen, H.-C. Kuo. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photon. Res., 2019, 7: 416-422.

[15] S. Nakamura, N. Senoh, N. Iwasa, S. I. Nagahama. High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures. Jpn. J. Appl. Phys., 1995, 34: L797-L799.

[16] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang. Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates. IEEE Photon. Tech. Lett., 2006, 18: 1152-1154.

[17] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki. Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys., 1997, 36: L382-L385.

[18] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, N. Yamada. Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect. Appl. Phys. Lett., 1998, 73: 1691-1693.

[19] B. Gil, O. Briot, R. L. Aulombard. Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry. Phys. Rev. B, 1995, 52: R17028.

[20] C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, J. I. Chyi. Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy. J. Appl. Phys., 2002, 91: 531-533.

[21] J. Piprek. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A, 2010, 207: 2217-2225.

[22] R. Lu, Q. Hong, Z. Ge, S.-T. Wu. Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight. Opt. Express, 2006, 14: 6243-6252.

[23] C. Jia, T. Yu, H. Lu, C. Zhong, Y. Sun, Y. Tong, G. Zhang. Performance improvement of GaN-based LEDs with step stage InGaN/GaN strain relief layers in GaN-based blue LEDs. Opt. Express, 2013, 21: 8444-8449.

[24] P.-C. Tsai, Y.-K. Su, W.-R. Chen, C.-Y. Huang. Enhanced luminescence efficiency of InGaN/GaN multiple quantum wells by a strain relief layer and proper Si doping. Jpn. J. Appl. Phys., 2010, 49: 04DG07.

[25] D. F. Feezell, J. S. Speck, S. P. DenBaars, S. Nakamura. Semipolar (202¯1¯) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting. J. Disp. Technol., 2013, 9: 190-198.

[26] H. Masui, S. Nakamura, S. P. DenBaars, U. K. Mishra. Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges. IEEE Trans. Electron Dev., 2010, 57: 88-100.

[27] M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, V. I. Klimov. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett., 2006, 6: 1396-1400.

[28] T. Erdem, H. V. Demir. Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics, 2013, 2: 57-81.

[29] H. W. Chen, J. He, S. T. Wu. Recent advances on quantum-dot-enhanced liquid-crystal displays. IEEE J. Sel. Top. Quantum Electron., 2017, 23: 1900611.

[30] J.-S. Park, J. Kyhm, H. H. Kim, S. Jeong, J. Kang, S.-E. Lee, K.-T. Lee, K. Park, N. Barange, J. Han, J. D. Song, W. K. Choi, I. K. Han. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett., 2016, 16: 6946-6953.

[31] H. Keum, Y. Jiang, J. K. Park, J. C. Flanagan, M. Shim, S. Kim. Photoresist contact patterning of quantum dot films. ACS Nano, 2018, 12: 10024-10031.

[32] F. Gou, E.-L. Hsiang, G. Tan, Y.-F. Lan, C.-Y. Tsai, S.-T. Wu. High performance color-converted micro-LED displays. J. Soc. Inf. Disp., 2019, 27: 199-206.

[33] H. Sato, A. Tyagi, H. Zhong, N. Fellows, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, S. Nakamura. High power and high efficiency green light emitting diode on free-standing semipolar (112¯2) bulk GaN substrate. Phys. Status Solidi (RRL), 2007, 1: 162-164.

[34] A. Tyagi, F. Wu, E. C. Young, A. Chakraborty, H. Ohta, R. Bhat, K. Fujito, S. P. DenBaars, S. Nakamura, J. S. Speck. Partial strain relaxation via misfit dislocation generation at heterointerfaces in (Al, In)GaN epitaxial layers grown on semipolar (112¯2) GaN free standing substrates. Appl. Phys. Lett., 2009, 95: 251905.

[35] J. Song, J. Choi, C. Zhang, Z. Deng, Y. Xie, J. Han. Elimination of stacking faults in semipolar GaN and light-emitting diodes grown on sapphire. ACS Appl. Mater. Interfaces, 2019, 11: 33140-33146.

[36] J. Song, J. Choi, K. L. Xiong, Y. J. Xie, J. J. Cha, J. Han. Semipolar (2021) GaN and InGaN light-emitting diodes grown on sapphire. ACS Appl. Mater. Interfaces, 2017, 9: 14088-14092.

[37] B. Leung, D. Wang, Y.-S. Kuo, J. Han. Complete orientational access for semipolar GaN devices on sapphire. Phys. Status Solidi B, 2016, 253: 23-35.

[38] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett., 2007, 91: 183507.

[39] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett., 2007, 91: 141101.

[40] S.-C. Ling, T.-C. Lu, S.-P. Chang, J.-R. Chen, H.-C. Kuo, S.-C. Wang. Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes. Appl. Phys. Lett., 2010, 96: 231101.

[41] S. H. Yen, M. C. Tsai, M. L. Tsai, Y. J. Shen, T. C. Hsu, Y. K. Kuo. Theoretical investigation of Auger recombination on internal quantum efficiency of blue light-emitting diodes. Appl. Phys. A, 2009, 97: 705-708.

[42] E. Kioupakis, Q. Yan, C. G. Van de Walle. Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. Appl. Phys. Lett., 2012, 101: 231107.

[43] J. Piprek, F. Roemer, B. Witzigmann. On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett., 2015, 106: 101101.

[44] LienJ.-Y.ChenC.-J.ChiangR.-K.WangS.-L., “Patternable color-conversion films based on thick-shell quantum dots,” in SID Symposium Digest of Technical Papers (Wiley, 2017), pp. 558561.

[45] F. Gou, E.-L. Hsiang, G. Tan, P.-T. Chou, Y.-L. Li, Y.-F. Lan, S.-T. Wu. Angular color shift of micro-LED displays. Opt. Express, 2019, 27: A746-A757.

Sung-Wen Huang Chen, Yu-Ming Huang, Konthoujam James Singh, Yu-Chien Hsu, Fang-Jyun Liou, Jie Song, Joowon Choi, Po-Tsung Lee, Chien-Chung Lin, Zhong Chen, Jung Han, Tingzhu Wu, Hao-Chung Kuo. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist[J]. Photonics Research, 2020, 8(5): 05000630.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!