激光与光电子学进展, 2018, 55 (7): 071602, 网络出版: 2018-07-20  

电场调控Au/Ti/Y2CeFe5O12结构的磁光克尔效应与电阻 下载: 756次

Electric-Field Control of Magneto-Optical Kerr Effect and Resistance of Au/Ti/Y2CeFe5O12 Structure
朱银龙 1,2,3秦俊 1,2,3张燕 1,2,3梁潇 1,2,3王闯堂 1,2,3毕磊 1,2,3,*
作者单位
1 电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 610054
2 电子科技大学电子薄膜与集成器件国家重点实验室, 四川 成都 610054
3 电子科技大学微电子与固体电子学院, 四川 成都 610054
摘要
在室温下实现了全固态Au/Ti/Y2CeFe5O12多层结构的电阻和磁光克尔效应的电场调控。在635 nm波长处,1.5 V的操作电压使饱和磁光克尔旋转角的变化幅度达58.1 μrad,对应的能耗为0.66 nJ/μm2,响应时间为300 s,且该调控具有可逆性与非易失性。以Au/Y2CeFe5O12作为对照,揭示了Ti层对该调控的关键影响。通过表征多层结构的电阻在电场作用下的变化,证实了氧离子迁移的发生。氧离子迁移是电场调控磁光效应的机制,该原型器件为发展电场可调的磁光器件提供了一种新途径。
Abstract
The electric-field control of resistance and magneto-optical Kerr effect of all-solid-state Au/Ti/Y2CeFe5O12 multilayer structure is realized at room temperature. At 635 nm wavelength, the rangeability of saturation magneto-optical Kerr rotation angle is 58.1 μrad under the operation voltage of 1.5 V. The corresponding energy dissipation is 0.66 nJ·μm-2 and the response time is 300 s. Moreover, the control is reversible and non-volatile. The critical effect of Ti layer on such a modulation is disclosed by contrast to Au/Y2CeFe5O12. The occurrence of oxygen ion migration is confirmed via the characterization for the change of electrical resistance of multilayer structure under the effect of electric field. The oxygen ion migration is the mechanism of electric-field control of magneto-optical effect. This prototype device offers a new way to develop electric-field tunable magneto-optical devices.Key words
参考文献

[1] Bi L, Hu J, Jiang P, et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nature Photonics, 2011, 5(12): 758-762.

[2] Huang D N, Pintus P, Zhang C, et al. Dynamically reconfigurable integrated optical circulators[J]. Optica, 2017, 4(1): 23-30.

[3] Zvezdin A K, Kotov V A. Modern magnetooptics and magnetooptical materials[M]. Bristol: CRC Press, 1997.

[4] Huang D N, Pintus P, Zhang C, et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 4403408.

[5] 蔡伟, 邢俊晖, 杨志勇, 等. 基于磁光耦合的法拉第效应机理分析[J]. 激光与光电子学进展, 2017, 54(6): 062601.

    Cai W, Xing J H, Yang Z Y, et al. Mechanism analysis of Faraday effect based on magneto-optic coupling[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062601.

[6] Liu M, Howe B M, Grazulis L, et al. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices[J]. Advanced Materials, 2013, 25(35): 4886-4892.

[7] Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields[J]. Nature Nanotechnology, 2015, 10(3): 209-220.

[8] Shiota Y, Nozaki T, Bonell F, et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses[J]. Nature Materials, 2012, 11(1): 39-43.

[9] Tsymbal E Y. Spintronics: Electric toggling of magnets[J]. Nature Materials, 2012, 11(1): 12-13.

[10] Wang K L, Kou X, Upadhyaya P, et al. Electric-field control of spin-orbit interaction for low-power spintronics[J]. Proceedings of the IEEE, 2016, 104(10): 1974-2008.

[11] 张楠, 张保, 杨美音, 等. 电学方法调控磁化翻转和磁畴壁运动的研究进展[J]. 物理学报, 2017, 66(2): 027501.

    Zhang N, Zhang B, Yang M Y, et al. Progress of electrical control magnetization reversal and domain wall motion[J]. Acta Physica Sinica, 2017, 66(2): 027501.

[12] 杨芝, 张悦, 周倩倩, 等. Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究[J]. 物理学报, 2017, 66(13): 137501.

    Yang Z, Zhang Y, Zhou Q Q, et al. Electric-field control of magnetic properties of Fe3O4 single-crystal film investigated by micro-magnetic simulation[J]. Acta Physica Sinica, 2017, 66(13): 137501.

[13] Dong S, Liu J M, Cheong S W, et al. Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology[J]. Advances in Physics, 2015, 64(5): 519-626.

[14] Lu N P, Zhang P F, Zhang Q H, et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch[J]. Nature, 2017, 546(7656): 124-128.

[15] Bauer U, Yao L, Tan A J, et al. Magneto-ionic control of interfacial magnetism[J]. Nature Materials, 2015, 14(2): 174-181.

[16] Gilbert D A, Grutter A J, Arenholz E, et al. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit[J]. Nature Communications, 2016, 7: 12264.

[17] Radaelli G, Petti D, Plekhanov E, et al. Electric control of magnetism at the Fe/BaTiO3 interface[J]. Nature Communications, 2014, 5: 3404.

[18] Qiu X P, Narayanapillai K, Wu Y, et al. Spin-orbit-torque engineering via oxygen manipulation[J]. Nature Nanotechnology, 2015, 10(4): 333-338.

[19] Newhouse-Illige T, Liu Y H, Xu M, et al. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions[J]. Nature Communications, 2017, 8: 15232.

[20] Bi C, Liu Y H, Newhouse-Illige T, et al. Reversible control of Co magnetism by voltage-induced oxidation[J]. Physical Review Letters, 2014, 113(26): 267202.

[21] Zhang Y, Wang C T, Liang X, et al. Enhanced magneto-optical effect in Y1.5Ce1.5Fe5O12 thin films deposited on silicon by pulsed laser deposition[J]. Journal of Alloys and Compounds, 2017, 703: 591-599.

[22] 陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982: 217-219.

    Chen J D, Liu Z Y. Dielectric physics[M]. Beijing: China Machine Press, 1982: 217-219.

[23] Meyer R, Schloss L, Brewer J, et al. Oxide dual-layer memory element for scalable non-volatile cross-point memory technology[C]. Proceedings of 9th Annual Non-Volatile Memory Technology Symposium, 2008: 54-58.

[24] Meyer R, Liedtke R, Waser R. Oxygen vacancy migration and time-dependent leakage current behavior of Ba0.3Sr0.7TiO3 thin films[J]. Applied Physics Letters, 2005, 86(11): 112904.

[25] Larentis S, Nardi F, Balatti S, et al. Resistive switching by voltage-driven ion migration in bipolar RRAM-part II: modeling[J]. IEEE Transactions on Electron Devices, 2012, 59(9): 2468-2475.

[26] Gomi M, Furuyama H, Abe M. Strong magneto-optical enhancement in highly Ce-substituted iron-garnet films prepared by sputtering[J]. Journal of Applied Physics, 1991, 70(11): 7065-7067.

[27] Vasili H B, Casals B, Cichelero R, et al. Direct observation of multivalent states and 4f →3d charge transfer in Ce-doped yttrium iron garnet thin films[J]. Physical Review B, 2017, 96(1): 014433.

[28] Liang X, Xie J L, Deng L J, et al. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3-xFe5O12[J]. Applied Physics Letters, 2015, 106(5): 052401.

朱银龙, 秦俊, 张燕, 梁潇, 王闯堂, 毕磊. 电场调控Au/Ti/Y2CeFe5O12结构的磁光克尔效应与电阻[J]. 激光与光电子学进展, 2018, 55(7): 071602. Zhu Yinlong, Qin Jun, Zhang Yan, Liang Xiao, Wang Chuangtang, Bi Lei. Electric-Field Control of Magneto-Optical Kerr Effect and Resistance of Au/Ti/Y2CeFe5O12 Structure[J]. Laser & Optoelectronics Progress, 2018, 55(7): 071602.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!