激光与光电子学进展, 2013, 50 (12): 120002, 网络出版: 2013-11-19   

单光束飞秒激光诱导石英玻璃内部纳米光栅的研究进展 下载: 840次

Research Progress of Single Beam Femtosecond Laser Direct Writing Self-Organized Nanogratings in Fused Silica
作者单位
1 上海大学理学院物理系, 上海 200444
2 华南理工大学发光材料与器件国家重点实验室, 广东 广州 510640
摘要
自从10年前通过电镜观察到单光束飞秒激光辐照石英玻璃内部能诱导出自组织纳米光栅结构后,这个方向迅速成为飞秒激光微加工领域的一个研究热点。对纳米光栅结构的研究现状进行了综述,并对其物理化学特性、应用领域以及形成过程中的影响因素等分别进行了介绍,最后对当前研究中存在的机遇与挑战做了展望。
Abstract
Single beam femtosecond laser induced self-organized nanograting in fused silica has been a research focus in the field of femtosecond laser material processing since it was firstly characterized by electron microscope ten years ago. Here the formation of self-organized nanograting is briefly introduced, together with its physicochemical properties, applications, and influencing factors. In addition, we point out the critical issues at present and suggest the potential research directions of this field as well.
参考文献

[1] A Assion, T Baumert, M Bergt, et al.. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses [J]. Science, 1998, 282(5390): 919-922.

[2] D Meshulach, Y Silberberg. Coherent quantum control of two-photon transitions by a femtosecond laser pulse [J]. Nature, 1998, 396(6708): 239-242.

[3] R R Gattassand, E Mazur. Femtosecond laser micromachining in transparent materials [J]. Nature Photon, 2008, 2(4): 219-225.

[4] K M Davis, K Miura, N Sugimoto, et al.. Writing waveguides in glass with a femtosecond laser [J]. Opt Lett, 1996, 21(21): 1729-1731.

[5] E N Glezer, M Milosavljevic, L Huang, et al.. Three-dimensional optical storage inside transparent materials [J]. Opt Lett, 1996, 21(24): 2023-2025.

[6] L Sudrie, M Franco, B Prade, et al.. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses [J]. Opt Commun, 1999, 171(4): 279-284.

[7] P G Kazansky, H Inouye, T Mitsuyu, et al.. Anomalous anisotropic light scattering in Ge-doped silica glass [J]. Phys Rev Lett, 1999, 82(10): 2199-2202.

[8] J D Mills, P G Kazansky, E Bricchi, et al.. Embedded anisotropic microreflectors by femtosecond-laser nanomachining [J]. Appl Phys Lett, 2002, 81(2): 196-198.

[9] J R Qiu, P G Kazansky, J Si, et al.. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass [J]. Appl Phys Lett, 2000, 77(13): 1940-1942.

[10] Y Shimotsuma, P Kazansky, J Qiu, et al.. Self-organized nanogratings in glass irradiated by ultrashort light pulses [J]. Phys Rev Lett, 2003, 91(24): 247405.

[11] C Hnatovsky, R S Taylor, E Simova, et al.. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica [J]. Opt Lett, 2005, 30(14): 1867-1869.

[12] C Hnatovsky, R S Taylor, E Simova, et al.. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching [J]. Appl Phys A, 2006, 84(1-2): 47-61.

[13] W Cai, A R Libertun, R Piestun. Polarization selective computer generated holograms realized in glass by femtosecond laser induced nanogratings [J]. Opt Express, 2006, 14(9): 3785-3791.

[14] R Taylor, C Hnatovsky, E Simova. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass [J]. Laser and Photon Rev, 2008, 2(1-2): 26-46.

[15] A Couairon, L Sudrie, M Franco, et al.. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses [J]. Phys Rev B, 2005, 71(12): 125435.

[16] L Sudrie, A Couairon, M Franco, et al.. Femtosecond laser-induced damage and filamentary propagation in fused silica [J]. Phys Rev Lett, 2002, 89(18): 186601.

[17] A Couairon, A Mysyrowicz. Femtosecond filamentation in transparent media [J]. Phys Rep, 2007, 441(2): 47-189.

[18] A Mermillod-Blondin, I M Burakov, Y P Meshcheryakov, et al.. Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates [J]. Phys Rev B, 2008, 77(10): 104205.

[19] E Bricchi, P Kazansky. Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass [J]. Appl Phys Lett, 2006, 88(11): 111119.

[20] E Bricchi, B G Klappauf, P G Kazansky. Form birefringence and negative index change created by femtosecond direct writing in transparent materials [J]. Opt Lett, 2004, 29(1): 119-121.

[21] S Richter, M Heinrich, S Dring, et al.. Nanogratings in fused silica: formation, control, and applications [J]. J Laser Appl, 2012, 24(4): 042008.

[22] S J Mihailov, C W Smelser, D Grobnic, et al.. Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask [J]. J Lightwave Technol, 2004, 22(1): 94-100.

[23] V Bhardwaj, E Simova, P Rajeev, et al.. Optically produced arrays of planar nanostructures inside fused silica [J]. Phys Rev Lett, 2006, 96(5): 057404.

[24] W J Yang, E Bricchi, P G Kazansky, et al.. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing [J]. Opt Express, 2006, 14(21): 10117-10124.

[25] R S Taylor, C Hnatovsky, E Simova, et al.. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica [J]. Opt Lett, 2007, 32(19): 2888-2890.

[26] Y Liao, Y Shen, L Qiao, et al.. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes [J]. Opt Lett, 2013, 38(2): 187-189.

[27] Y Shimotsuma, M Sakakura, K Miura. Manipulation of optical anisotropy in silica glass [J]. Opt Mater Express, 2011, 1(5): 803-815.

[28] Y Shimotsuma, K Hirao, J Qiu, et al.. Nanofabrication in transparent materials with a femtosecond pulse laser [J]. J Non-Cryst Solids, 2006, 352(6-7): 646-656.

[29] M Sakakura, M Shimizu, Y Shimotsuma, et al.. Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses [J]. Appl Phys Lett, 2008, 93(23): 231112.

[30] L Ramirez, M Heinrich, S Richter, et al.. Tuning the structural properties of femtosecond-laser-induced nanogratings [J]. Appl Phys A, 2010, 100(1): 1-6.

[31] X Yu, Y Liao, F He, et al.. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses [J]. J Appl Phys, 2011, 109(5): 053114.

[32] M Beresna, M Geceviius, P G Kazansky, et al.. Exciton mediated self-organization in glass driven by ultrashort light pulses [J]. Appl Phys Lett, 2012, 101(5): 053120.

[33] Y Shimotsuma, M Sakakura, P G Kazansky, et al.. Ultrafast manipulation of self-assembled form birefringence in glass [J]. Adv Mater, 2010, 22(36): 4039-4043.

[34] K Miura, J Qiu, S Fujiwara, et al.. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions [J]. Appl Phys Lett, 2002, 80(13): 2263-2265.

[35] S Arnold, C T Liu, B Whitten, et al.. Room-temperature microparticle-based persistent spectral hole burning memory [J]. Opt Lett, 1991, 16(6): 420-422.

[36] A Manz, H Becker. Microsystem Technology in Chemistry and Life Sciences [M]. Berlin:Springer Verlag, 1998. 194.

[37] Y Liao, Y Cheng, C Liu, et al.. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration [J]. Lab Chip, 2013, 13(8): 1626-1631.

[38] F Zhang, Y Yu, C Cheng, et al.. Fabrication of polarization-dependent light attenuator in fused silica using a low-repetition-rate femtosecond laser [J]. Opt Lett, 2013, 38(13): 2212-2214.

[39] G Cheng, K Mishchik, C Mauclair, et al.. Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass [J]. Opt Express, 2009, 17(12): 9515-9525.

[40] 李冬娟, 林灵, 吕百达, 等. 低重复频率飞秒激光在石英玻璃内写入的II类波导的波导依赖导光性研究 [J]. 光学学报, 2013, 33(5): 0532001.

    Li Dongjuan, Lin Ling, Lü Baida, et al.. Polarization-dependent optical guiding in low repetition frequency femtosecond laser photowritten type II fused silica waveguides [J]. Acta Optica Sinica, 2013, 33(5): 0532001.

[41] P Srisungsitthisunti, O Ersoy, X Xua. Volume Fresnel zone plates fabricated by femtosecond laser direct writing [J]. Appl Phys Lett, 2007, 90(1): 011104.

[42] E Bricchi, J D Mills, P G Kazansky, et al.. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining [J]. Opt Lett, 2002, 27(24): 2200-2202.

[43] S Richter, M Heinrich, S Dring, et al.. Formation of femtosecond laser-induced nanogratings at high repetition rates [J]. Appl Phys A, 2011, 104(2): 503-507.

[44] P Rajeev, M Gertsvolf, E Simova, et al.. Memory in nonlinear ionization of transparent solids [J]. Phys Rev Lett, 2006, 97(25): 253001.

[45] S Richter, F Jia, M Heinrich, et al.. The role of self trapped excitons and defects in the formation of nanogratings in fused silica [J]. Opt Lett, 2012, 37(4): 482-484.

[46] H Van Driel, J Sipe, J Young. Laser-induced periodic surface structure on solids: a universal phenomenon [J]. Phys Rev Lett, 1982, 49(26): 1955-1958.

[47] M Huang, F Zhao, Y Cheng, et al.. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser [J]. ACS Nano, 2009, 3(12): 4062-4070.

[48] F Liang, R Vallée, S L Chin. Mechanism of nanograting formation on the surface of fused silica [J]. Opt Express, 2012, 20(4): 4389-4396.

[49] F Liang, Q Sun, D Gingras, et al.. The transition from smooth modification to nanograting in fused silica [J]. Appl Phys Lett, 2010, 96(10): 101903.

[50] G Petite, P Daguzan, S Guizard, et al.. Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study [J]. Nucl Instrum Methods Phys Res B, 1996, 107(1): 97-101.

[51] P Martin, S Guizard, P Daguzan, et al.. Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals [J]. Phys Rev B, 1997, 55(9): 5799-5810.

[52] S S Mao, F Quéré, S Guizard, et al.. Dynamics of femtosecond laser interactions with dielectrics [J]. Appl Phys A, 2004, 79(7): 1695-1709.

[53] R T Song, K S Williams. The self trapped exciton [J]. Phys Chem Solids, 1990, 51(7): 679-716.

[54] K Tanimura, C Itoh, N Itoh. Transient optical-absorption and luminescence induced by band-to-band excitation in amorphous SiO2 [J]. J Phys C, 1988, 21(9): 1869-1876.

[55] C Itoh, T Suzuki, N Itoh. Luminescence and defect formation in undensified and densified amorphous SiO2 [J]. Phys Rev B, 1990, 41(6):3794-3799.

[56] J Stathis, M Kastner. Time-resolved photoluminescence in amorphous silicon dioxide [J]. Opt Lett, 1987, 35(6): 2972-2979.

[57] D Wortmann, M Ramme, J Gottmann. Refractive index modification using fs-laser double pulses [J]. Opt Express, 2007, 15(16): 10149-10153.

[58] S Richter, F Jia, M Heinrich, et al.. Enhanced formation of nanogratings inside fused silica due to the generation of self-trapped excitons induced by femtosecond laser pulses [C]. SPIE, 2012, 8247: 82470N.

[59] J Chan, T Huser, S Risbud, et al.. Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses [J]. Appl Phys A, 2003, 76(3): 367-372.

[60] Y Dai, G Wu, L Xian, et al.. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica [J]. Opt Express, 2012, 20(16): 18072-18078.

[61] Y Shimotsuma, K Hirao, J Qiu, et al.. Nano-modification inside transparent materials by femtosecond laser single beam [J]. Mod Phys Lett B, 2005, 19(5): 225-238.

[62] C Hnatovsky, R S Taylor, P P Rajeev, et al.. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica [J]. Appl Phys Lett, 2005, 87(1): 014104.

[63] P Salter, M Booth. Dynamic control of directional asymmetry observed in ultrafast laser direct writing [J]. Appl Phys Lett, 2012, 101(14): 141109.

[64] P G Kazansky, W Yang, E Bricchi, et al.. “Quill” writing with ultrashort light pulses in transparent materials [J]. Appl Phys Lett, 2007, 90(15): 151120.

[65] W Yang, P G Kazansky, Y Shimotsuma, et al.. Ultrashort pulse laser calligraphy [J]. Appl Phys Lett, 2008, 93(17): 171109.

[66] P Kazansky, Y Shimotsuma, M Sakakura, et al.. Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front [J]. Opt Express, 2011, 19(21): 20657-20664.

[67] P Kazansky, M Beresna. Ultrafast-Laser Materials Processing Uncovers New Anisotropy Effects [OL]. http://spie.org/x38105.xml,2009-22-23.

[68] S Akturk, X Gu, E Zeek, et al.. Pulse-front tilt caused by spatial and temporal chirp [J]. Opt Express, 2004, 12(19): 4399-4410.

[69] D Vitek, E Block, Y Bellouard, et al.. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials [J]. Opt Express, 2010, 18(24): 24673-24678.

[70] S Akturk, X Gu, P Bowlan, et al.. Spatio-temporal couplings in ultrashort laser pulses [J]. J Opt, 2010, 12(9): 093001.

[71] D N Vitek, D E Adams, A Johnson, et al.. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials [J]. Opt Express, 2010, 18(17): 18086-18094.

[72] 夏国才, 孙小燕, 段吉安. 用于实现激光高效率加工的光束整形技术 [J]. 激光与光电子学进展, 2012, 49(10): 100002.

    Xia Guocai, Sun Xiaoyan, Duan Ji′an. Beam shaping technologies for high efficiency laser fabrication [J]. Laser & Optoelectronics Progress, 2012, 49(10): 100002.

[73] 曹斓, 阎晓娜, 戴晔, 等. 利用飞秒脉冲光谱全息实现空域信息向时域信息的转换 [J]. 光学学报, 2012, 32(6): 0609001.

    Cao Lan, Yan Xiaona, Dai Ye, et al.. Space-to-time conversion by femtosecond spectrum holography [J]. Acta Optica Sinica, 2012, 32 (6): 0609001.

戴晔, 邱建荣. 单光束飞秒激光诱导石英玻璃内部纳米光栅的研究进展[J]. 激光与光电子学进展, 2013, 50(12): 120002. Dai Ye, Qiu Jianrong. Research Progress of Single Beam Femtosecond Laser Direct Writing Self-Organized Nanogratings in Fused Silica[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!