Frontiers of Optoelectronics, 2017, 10 (3): 292, 网络出版: 2018-01-17  

Excitation-emission matrices (EEMs) of colorectal tumors - tool for spectroscopic diagnostics of gastrointestinal neoplasia

Excitation-emission matrices (EEMs) of colorectal tumors - tool for spectroscopic diagnostics of gastrointestinal neoplasia
作者单位
1 Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, Sofia 1784, Bulgaria
2 Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
3 Tsaritsa Yoanna - ISUL University Hospital, 8, Byalo More Str., Sofia 1572, Bulgaria
摘要
Abstract
The autofluorescence spectroscopy of biological tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions’ growth. To obtain a full picture of the whole set of endogenous fluorophores appearing in the gastrointestinal (GI) tumors investigated, the technique of excitation-emission matrix (EEM) development was applied in a broad spectral region, covering the ultraviolet and visible spectral ranges. We could thus address a set of diagnostically-important chromophores and their alterations during tumor development, namely, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavins, porphyrins, while hemoglobin’s absorption influence on the spectra obtained could be evaluated as well. Comparisons are presented between EEM data of normal mucosae, benign polyps and malignant carcinoma, and the origins are determined of the fluorescence signals forming these matrices.
参考文献

[1] Young P E, Womeldorph C M. Colonoscopy for colorectal cancer screening. Journal of Cancer, 2013, 4(3): 217-226

[2] Jemal A, Bray F, Center M M, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: a Cancer Journal for Clinicians, 2011, 61(2): 69-90

[3] Benson A B 3rd. Epidemiology, disease progression, and economic burden of colorectal cancer. Journal of Managed Care Pharmacy: JMCP, 2007, 13(6 Suppl C): 5-18

[4] Song M, Ang T.Early detection of early gastric cancer using imageenhanced endoscopy: current trends. Gastrointestinal Intervention, 2014, 3(1): 1-7

[5] Fujiya M, Kohgo Y. Image-enhanced endoscopy for the diagnosis of colon neoplasms. Gastrointestinal Endoscopy, 2013, 77(1): 111- 118.e5

[6] Johansson A, Kromer K, Sroka R, Stepp H. Clinical optical diagnostics: Status and perspectives. Medical Laser Application, 2008, 23(4): 155-174

[7] Hasan M, Wallace M. Image-enhanced endoscopy. Clinical Update, 2009, 16(4): 1-5

[8] Subramanian V, Ragunath K. Advanced endoscopic imaging: a review of commercially available technologies. Clinical Gastroenterology and Hepatology : the Official Clinical Practice Journal of the American Gastroenterological Association, 2014, 12(3): 368- 76.e1

[9] amanujam N.Fluorescence spectroscopy of neoplastic and nonneoplastic tissues. Neoplasia, 2000, 2(1- 2): 89-117

[10] Wong KeeSong L M, Banerjee S, Desilets D, Diehl D L, Farraye F A, Kaul V, Kethu S R, Kwon R S, Mamula P, Pedrosa M C, Rodriguez S A, Tierney W M. Autofluorescence imaging. Gastrointestinal Endoscopy, 2011, 73(4): 647-650

[11] Prosst R L, Gahlen J. Fluorescence diagnosis of colorectal neoplasms: a review of clinical applications. International Journal of Colorectal Disease, 2002, 17(1): 1-10

[12] Ferreira D S, Henriques M, Oliveira R, Correia J H, Minas G. Autofluorescence spectroscopy of a human gastrointestinal carcinoma cell line: design of optical sensors for the detection of early stage cancer. In: Proceedings of the International Conference on Biomedical Electronics and Devices 2009, Porto, Portugal. 2009: 61-66

[13] Van Putten P, Ramsoekh D, Haringsma J, Poley J W, Van Dekken H, Steyerberg E, Van M E, Kuipers E J. Autofluorescence endoscopy allows better differentiation than white light video colonoscopy in classifying adenomatous and non-adenomatous colorectal polyps. Gastrointestinal Endoscopy, 2009, 69(5): AB290

[14] Luo X J, Zhang B, Li J G, Luo X A, Yang L F. Autofluorescence spectroscopy for evaluating dysplasia in colorectal tissues. Zeitschrift fur Medizinische Physik, 2012, 22(1): 40-47

[15] Tajiri H. Autofluorescence endoscopy for the gastrointestinal tract. Proceedings of the Japan Academy Series B, Physical and biological sciences, 2007, 83(8): 248-255

[16] Aihara H, Sumiyama K, Saito S, Tajiri H, Ikegami M. Numerical analysis of the autofluorescence intensity of neoplastic and nonneoplastic colorectal lesions by using a novel videoendoscopy system. Gastrointestinal Endoscopy, 2009, 69(3): 726-733

[17] Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Research, 2009, 69(11): 4918-4925

[18] Lunt S Y, Vander Heiden M G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 2011, 27(1): 441-464

E. BORISOVA, Ts. GENOVA, O. SEMYACHKINA-GLUSHKOVSKAYA, N. PENKOV, I. TERZIEV, B. VLADIMIROV. Excitation-emission matrices (EEMs) of colorectal tumors - tool for spectroscopic diagnostics of gastrointestinal neoplasia[J]. Frontiers of Optoelectronics, 2017, 10(3): 292. E. BORISOVA, Ts. GENOVA, O. SEMYACHKINA-GLUSHKOVSKAYA, N. PENKOV, I. TERZIEV, B. VLADIMIROV. Excitation-emission matrices (EEMs) of colorectal tumors - tool for spectroscopic diagnostics of gastrointestinal neoplasia[J]. Frontiers of Optoelectronics, 2017, 10(3): 292.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!