光谱学与光谱分析, 2018, 38 (1): 128, 网络出版: 2018-01-30   

金属纳米结构增强荧光的研究进展

New Development of Metal Nanostructures Enhanced Fluorescence
作者单位
1 宁波工程学院电信学院, 浙江 宁波 315016
2 浙江大学信电系, 浙江 杭州 310007
3 上海出入境检验检疫局, 上海 200135
摘要
金属表面等离子体(surface plasmon)是金属与介质界面处传播的电荷振荡密度波。 当振荡频率与激发光频率相匹配时将产生金属表面等离子体共振, 从而能够在金属结构附近产生强烈的消光和近场增强效应, 该效应在表面等离子共振成像、 表面等离子体波导、 生物传感、 光谱增强等方面有着重要的应用前景。 本文综述了金属结构的表面等离子共振效应在增强荧光光谱方面的研究进展。 论文首先介绍了金属表面等离子体增强荧光的机理以及影响荧光增强效果的因素; 其次, 从用于荧光增强的各类金属纳米结构的角度分别综述了荧光增强研究的最新进展; 最后, 介绍了荧光增强在食品检测、 环境监测、 光学成像、 光电器件、 荧光上转换等领域的最新应用情况。
Abstract
Surface plasmon (SP) is electron density oscillation wave that propagates at the metal-dielectric interface. When the oscillation frequency matches with the incident light frequency, surface plasmon resonance effects are induced. It leads to strong light extinction and field enhancement near the metal structures. SP resonance effect can be applied to SP imaging, SP waveguide, biology sensing and spectral enhancement. The research progress of metal nanostructure enhanced fluorescence was reviewed. Firstly, the mechanism of metal enhanced fluorescence and the factors influencing fluorescence enhancement were introduced. Then, the research progress in fluorescence enhancement using different metal structures was reviewed. Finally, some new applications of fluorescence enhancement such as food testing, environmental testing, imaging optics, optoelectronic devices, fluorescence upconversion were introduced.
参考文献

[1] Drexhage K H. In: Wolf E, ed. Progress in Optics. Amsterdam: North-Holland, 1974. 161.

[2] Turner E H, Lauterbach K, Pugsley H R, et al. Anal. Chem., 2007, 79: 778.

[3] L Hui, GUAN Cheng-gang, TAN Bao-hua(吕 辉, 官成钢, 谭保华, 译). Nanotechnology for Photovoltaics(纳米光伏技术). Beijing: Publishing House of Electronics Industry(北京: 电子工业出版社), 2014.

[4] Huang Q, Huang Z, Meng G, et al. Chem. Commun., 2013, 49: 11743.

[5] Abel B, Coskun S, Mohammed M. Journal of Physical Chemistry C Nanomaterials & Interfaces, 2015, 119: 675.

[6] ZHENG Li, ZHU Jin, WU Fei, et al(郑 莉, 朱 进, 吴 飞, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(6): 1477.

[7] Praveeen G, Lekha G, Visakh V, et al. J. Nanopart. Res., 2014, 16: 2217.

[8] Zhou J, Li J, Hong Y, et al. Transactions of Nonferrous Metals Society of China, 2013, 23: 456.

[9] Wu T F, Yang S B, Li X F. The Journal of Physical Chemistry C, 2013, 117: 8397.

[10] Tang X L, Tsuji M, Jiang P. Colloids and Surf. A: Phys., Eng. Aspects, 2009, 338. 33

[11] XU Ling-ling(徐玲玲). High-Precision Fluorescence Lifetime Imaging Method and Its Applications(高精度荧光寿命成像方法及应用). Huazhong University of Science & Technology(华中科技大学), 2013.

[12] Goldys E, Barnett A, Xie F, et al. Applied Physics A, 2007, 89: 265.

[13] Abadeer N S, Brennan M R, Wilson W L, et al. ACS Nano, 2014, 8(8): 8392.

[14] Zhao T, Yu K, Li L, et al. ACS Applied Materials & Interfaces, 2014, 6: 2700.

[15] Khatua S, Pedro M R Paulo, Yuan Haifeng, et al. ACS Nano, 2014, 8(5): 4440.

[16] WANG Jing-jing, WU Ying, LIU Ying, et al(王静静, 吴 莹, 刘 莹, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(1): 140.

[17] Mohammad Salman Khan, Vijay Raman Chaudhari. Journal of Fluorescence, 2014, 24: 751.

[18] Jang E, Su M, Koh W. Analyst, 2015, 140: 3375.

[19] Cheng Z H, Li G, Liu M. Sensors and Actuators B, 2015, 212: 495.

[20] Fujii M, Nakano T, Imakita K, et al. J. Phys. Chem., 2013, 117: 1113.

[21] Zhang H, Lin X, et al. Molecular and Biomolecular Spectroscopy, 2015, 151: 716.

[22] YIN Yong-qi(尹永琦). Photoluminescence and Surface Enhanced Spectroscopy of Surface-Modified ZnO Nanorods(表面修饰ZnO纳米棒光致发光和表面增强光谱效应研究). Harbin Institute of Technolgy(哈尔滨工业大学), 2014.

[23] Saboktakin M, Ye X, Chettiar U, et al. ACS Nano, 2013, 7: 7186.

[24] Lu D, Cho S, Ahn S, et al. ACS Nano, 2014, 8(8): 7780.

[25] Zemtsova G, Montgomery M, Levin M. PLoS One, 2015, 10(1): 0116658.

[26] Chen H, Parimelalagan M, Lai Y L, et al. Journal of Molecular Diagnostics, 2015, 17(6): 722.

[27] Soaresa S, Amarala J S, Beatriz M, et al. Meat Science, 2015, 94(1): 115.

[28] Yadav R, Paria A, Mankame S, et al. Molecular & Cellular Probes, 2015, 29(6): 442.

[29] ZHAO Jin-hui, YUAN Hai-chao, HONG Qian, et al(赵进辉, 袁海超, 洪 茜, 等). Optics and Precision Engineering(光学精密工程), 2014, 22(11): 2902.

[30] ZHAO Jin-hui, YUAN Hai-chao, HU Qi, et al(赵进辉, 袁海超, 胡 琪, 等). Chinese Journal of Laser(中国激光), 2015, 42(2): 0215002-1.

[31] Yang C, Wang Y, Marty J, et al. Biosensors & Bioelectronics, 2011, 26(5): 2724.

[32] Li L, Li B, Cheng D, et al. Food Chemistry, 2010, 122(3): 895.

[33] XIE Wen-ping, ZHU Xin-ping, ZHENG Guang-ming, et al(谢文平, 朱新平, 郑光明, 等). Environmental Science(环境科学), 2014, 35(12): 4644.

[34] QIN Hua-wei, LIU Ai-ying, GU Wei-li, et al(秦华伟, 刘爱英, 谷伟丽, 等). Asian Journal of Ecotoxicology(生态毒理学报), 2015, 10(6): 287.

[35] Mannes D, Benoit C, Heinzelmann D, et al. Archaeometry, 2014, 56(5): 717.

[36] Wang S F, Zhu Y X, Shao Q, et al. Journal of Pharmaceutical and Biomedical Analysis, 2016, 117: 255.

[37] Sonya E L Craig, James Wright, Andrew E Sloan, et al. World Neurosurgery, 2016, 90: 154.

[38] Park J, Pahk K, Kim S, et al. Oncology Letters, 2015, 10(2): 1131.

[39] Zhao Y S, Li C. Current Drug Metabolism, 2015, 16: 807.

[40] Wang J L, Zhang G, Li Q, et al. Scientific Report, 2014.

[41] Ayala-Orozco C, Liu J G, Knight M W. Nano Letters, 2014, 14: 2926.

[42] Wang P, Wang X, Wang L, et al. Science and Technology of Advanced Materials, 2015, 16: 15.

[43] Liu J M, Chen J T, Yuan X P. Anal. Chem., 2013, 85: 3238.

[44] Chandirasekar S, Chandirasekarn C, Sudhandiran G, et al. Colloids and Surfaces B: Biointerfaces, 2016, 143: 472.

[45] LI Yao-jun, SHEN Hao, FENG Zong-yan, et al(李曜均, 沈 浩, 冯宗焱, 等). Journal of South China Normal University(华南师范大学学报), 47(6): 32.

[46] He X, Wang W, Li S, et al. ECS Solid State Letters, 2015, 4: 10.

[47] Qiu H, Yang C, Shao W, et al. Nanomaterials, 2014, 4: 55.

[48] Park W J, Lua D W, Ahna S M. Chem. Soc. Rev., 2015, 44: 2940.

[49] Luu Q A, Hor A, Fisher J, et al. The Journal of Physical Chemistry C, 2014, 118: 3251.

[50] Lee K T, Park J H, Kwon S J, et al. Nano Letters, 2015, 15: 2491.

[51] Feng A L, Lin M, Tian L M, et al. RSC Adv., 2015, 5: 76825.

[52] Fujii M, Nakano T, Imakita K, et al. J. Phys. Chem. C, 2013, 117: 1113.

吴江宏, 程培红, 张驰, 王啦, 赵洪霞, 王敬蕊, 丁志群, 鲍吉龙. 金属纳米结构增强荧光的研究进展[J]. 光谱学与光谱分析, 2018, 38(1): 128. WU Jiang-hong, CHENG Pei-hong, ZHANG Chi, WANG La, ZHAO Hong-xia, WANG Jing-rui, DING Zhi-qun, BAO Ji-long. New Development of Metal Nanostructures Enhanced Fluorescence[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 128.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!