强激光与粒子束, 2019, 31 (2): 022002, 网络出版: 2019-04-02  

轴向磁场下感应耦合放电模式转换的实验研究

Experimental investigation on mode transition of inductively coupled plasma discharge under axial magnetic field
作者单位
空军工程大学 等离子体动力学重点实验室, 西安 710038
摘要
为探究轴向磁场对纯Ar感应耦合等离子体放电模式转换的影响, 设计并搭建一整套等离子体产生装置展开实验研究, 引入阻抗分析法对放电模式转换进行判断, 并得到了朗缪尔探针法的验证。实验发现, 当气压为10 Pa时, 轴向磁场强度的增加使得E-H和H-E模式转换的阈值功率增大; 同时, 随着轴向磁场的增强, 放电中心区域的电子密度不断降低。初步分析认为, 这是由于带电粒子在洛伦兹力作用下做回旋运动, 导致高能电子在垂直磁场方向上的碰撞减少, 降低了电子密度以及感应耦合效率。进一步分析电子能量概率函数(EEPF)发现, 在E模式下, 轴向磁场对电子运动的约束作用更加明显, 高能电子(>27 eV)所占比例增多, 电子能量分布更加均匀。
Abstract
In order to investigate the problem of mode transition of radio frequency Ar inductively coupled plasma under the influence of axial magnetic field, a small inductively coupled plasma generator experimental system was designed and built. The impedance analysis method was used in the experiment, also verified correct by Langmuir probe method. It is found out that, when the pressure is 10 Pa, the increase of axial magnetic field intensity will increase the discharge power of E-H and H-E mode transitions. At the same time, the stronger the magnetic field is, the lower the electron density at the center of discharge area is. According to some preliminary analysis, charged particles make cyclotron motion at the influence of Lorentz force, which leads to the reduced collisions of high-energy electrons in the direction perpendicular to the magnetic field. Accordingly, electron density decreases and power coupling efficiency decreases. Further analysis on electron energy probability function (EEPF) has suggested that axial magnetic field has stronger restriction on electronic motion under E mode than H mode. As a result, the reduced collisions lead to a higher high-energy (>27 eV) proportion and a more uniform electron energy probability function under E mode, which has conformed with aforementioned analysis.
参考文献

[1] 徐会静.射频感性耦合氢等离子体放电模式转换及回滞的模拟研究[D].大连: 大连理工大学, 2016.(Xu Huijing. Simulation investigation of mode transitions and hysteresis in radio frequency H2 inductively coupled plasma. Dalian: Dalian University of Technology, 2016)

[2] Cunge G, Crowley B, Vender D, et al. Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysteresis[J]. Plasma sources science and technology, 1999, 8(4): 576-586.

[3] Kortshagen U, Gibson N D, Lawler J E. On the E-H mode transition in RF inductive discharges[J]. Journal of Physics D: Applied Physics, 1996, 29(5): 1224-1236.

[4] Singh S V, Kempkes P, Soltwisch H. Electron energy distribution function close to the mode transition region in an inductively coupled gaseous electronics conference reference cell[J]. Appl Phys Lett, 2006, 89: 161501.

[5] Singh S V. Hysteresis and mode transition in terms of electron energy distribution function for an inductively coupled argon discharge[J]. Journal of Physics D: Applied Physics Letters, 2006, 103: 083303.

[6] Lee H C, Chung C W. Experimental measurements of spatial plasma potentials and electron energy distributions in inductively coupled plasma under weakly collisional and nonlocal electron kinetic regimes[J]. Physics of Plasmas, 2012, 19: 033514.

[7] Turner M M, Lieberman M A. Hysteresis and the E-to-H transition in radiofrequency inductive discharges[J]. Plasma Sources Science and Technology, 1999, 8(2): 313-324.

[8] El-Fayoumi I M, Jones I R, Turner M M. Hysteresis in the E- to H- mode transition in a planar coil inductively coupled rf argon discharge[J]. Journal of Physics D: Applied Physics, 1998, 31(21): 3082-3094.

[9] Kralkina E A, Rukhadze A A, Nekliudova P A, et al. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field[J]. Aip Advances, 2018, 8: 035217.

[10] 汪建.射频电感耦合等离子体及模式转变的实验研究[D].合肥: 中国科学技术大学, 2014.(Wang Jian. Experimental study of radio frequency inductively coupled plasma and mode transition. Hefei: University of Science and Technology of China, 2014)

[11] Lee H C, Chung C W. Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas, 2013, 20: 101607.

[12] Edamura M, Benck E C. Effects of voltage distribution along an induction coil and discharge frequency in inductively coupled plasmas[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2004, 22(2): 293-301.

[13] Ding Z F, Yuan G Y, Gao W, et al. Effects of impedance matching network on the discharge mode transitions in a radio-frequency inductively coupled plasma[J]. Physics of Plasmas, 2008, 15: 063506.

[14] 沈苑, 王瑞雪, 章程, 等.微秒脉冲激励的大气压氦等离子体射流放电特性[J].强激光与粒子束, 2016, 28: 055001.(Shen Yuan, Wang Ruixue, Zhang Cheng, et al. Characterization of atmospheric pressure helium plasma jet driven by microsecond pulse. High Power Laser and Particle Beams, 2016, 28: 055001)

[15] Lee M H, Chung C W. Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas[J]. Plasma Sources Science and Technology, 2010, 19: 015011.

[16] 彭永伦, 杨莉, 王民盛, 等.等离子体X射线吸收谱及发射谱研究[J].强激光与粒子束, 2002, 14(3): 389-393.(Peng Yonglun, Yang Li, Wang Minsheng, et al. X-ray absorption spectra and emission spectra of plasmas. High Power Laser and Particle Beams, 2002, 14(3): 389-393)

[17] 何永乐, 高俊, 左都罗, 等.大气压He-Ar射频容性放电Ar亚稳态粒子数密度[J].强激光与粒子束, 2017, 29: 051002.(He Yongle, Gao Jun, Zuo Duluo, et al. Ar metastable particle number density of He-Ar RF capacitive discharge at atmospheric pressure. High Power Laser and Particle Beams, 2017, 29: 051002)

[18] 杜寅昌, 曹金祥, 汪建, 等.射频电感耦合夹层等离子体中的模式转换[J].物理学报, 2012, 61: 195206.(Du Yinchang, Cao Jinxiang, Wang Jian, et al. Mode transition of inductively coupled plasma in interlayer chamber. Acta Physica Sinica, 2012, 61: 195206)

[19] Song H Y, Kim C W, Pard S G, et al. Dependence of etch selectivity of SiO2 etching on the axial magnetic field added to ICP[J]. Journal of the Korean Physical Society, 2004, 45: S748-S751.

[20] Hoam O B, Jeong J S, Park S G. Improvement of ICP plasma with periodic control of axial magnetic field[J]. Surface and Coatings Technology, 1999, 120/121: 752-756.

[21] Lee Y J, Kim K N, Song B K, et al. Linear internal inductively coupled plasma (ICP) source with magnetic fields for large area processing[J]. Thin Solid Films, 2003, 435(1): 275-279.

[22] Kim K N, Lim J H, Park J K, et al. Plasma characteristics and antenna electrical characteristics of an internal linear inductively coupled plasma source with a multi-polar magnetic field[J]. Plasma Chemistry & Plasma Processing, 2008, 28(1): 147-158.

[23] Kim K N, Lim J H, Yeom G Y. Plasma and antenna characteristics of a linearly extended inductively coupled plasma system using multi-polar magnetic field[J]. Thin Solid Films, 2007, 515(12): 5193-5196.

[24] 王品乐.弱磁场对柱面感性耦合等离子体参数径向分布的影响[D].大连: 大连理工大学, 2014.(Wang Pinle. The effects of weak magnetic field on radial characteristics profile of cylindrical inductively coupled plasma. Dalian: Dalian University of Technology, 2014)

[25] 乔馨慧.磁场对容性及感应耦合等离子体性质影响的数值模拟研究[D].武汉: 华中科技大学, 2014.(Qiao Xinhui. Numerical simulation study of influence of magnetic field on the capacitive inductively coupled plasma. Wuhan: Huazhong University of Science of Technology, 2014)

[26] 郑春开.等离子体物理[M].北京: 北京大学出版社, 2009.(Zheng Chunkai. Plasma Physics. Beijing: Peking University Press, 2009)

[27] Lee Y W, Lee H L, Chung T H. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas[J]. Journal of Applied Physics, 2011, 109: 113302.

马旺, 李益文, 赵伟灼, 魏小龙, 罗思海. 轴向磁场下感应耦合放电模式转换的实验研究[J]. 强激光与粒子束, 2019, 31(2): 022002. Ma Wang, Li Yiwen, Zhao Weizhuo, Wei Xiaolong, Luo Sihai. Experimental investigation on mode transition of inductively coupled plasma discharge under axial magnetic field[J]. High Power Laser and Particle Beams, 2019, 31(2): 022002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!