中国激光, 2018, 45 (3): 0307009, 网络出版: 2018-03-06   

基于荧光随机涨落的超分辨显微成像 下载: 1496次特邀综述

Fluorescence Fluctuation-Based Super-Resolution Nanoscopy
作者单位
福州大学物理与信息工程学院, 福建 福州 350116
引用该论文

曾志平. 基于荧光随机涨落的超分辨显微成像[J]. 中国激光, 2018, 45(3): 0307009.

Zeng Zhiping. Fluorescence Fluctuation-Based Super-Resolution Nanoscopy[J]. Chinese Journal of Lasers, 2018, 45(3): 0307009.

参考文献

[1] Chojnacki J, Staudt T, Glass B. et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy[J]. Science, 2012, 338(6106): 524-528.

[2] Xu K, Babcock H P, Zhuang X. Dual-objective storm reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 2012, 9(2): 185-188.

[3] Zeng Z, Xi P. Advances in three-dimensional super-resolution nanoscopy[J]. Microscopy Research and Technique, 2016, 79(10): 893-898.

[4] Balzarotti F, Eilers Y, Gwosch K C. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 2017, 355(6325): 606.

[5] Chen X, Zeng Z, Wang H. et al. Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes[J]. Nano Research, 2015, 8(7): 2251-2260.

[6] Liu Y, Lu Y, Yang X. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 2017, 543(7644): 229-233.

[7] Chen X, Li R, Liu Z. et al. Small photoblinking semiconductor polymer dots for fluorescence nanoscopy[J]. Advanced Materials, 2017, 29(5): 1604850.

[8] Chen X, Zeng Z, Li R. et al. Superior performance with sCMOS over EMCCD in super-resolution optical fluctuation imaging[J]. Journal of Biomedical Optics, 2016, 21(6): 066007.

[9] Zeng Z, Xie H, Chen L. et al. Computational methods in super-resolution microscopy[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1222-1235.

[10] Dickson R M, Cubitt A B, Tsien R Y. et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein[J]. Nature, 1997, 388(6640): 355-358.

[11] Gómez D E, van Embden J, Jasieniak J, et al. Blinking and surface chemistry of single CdSe nanocrystals[J]. Small, 2006, 2(2): 204-208.

[12] Dertinger T, Colyer R, Iyer G. et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22287-22292.

[13] Dertinger T, Colyer R, Vogel R. et al. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI)[J]. Optics Express, 2010, 18(18): 18875-18885.

[14] Jiang S, Zhang Y, Yang H. et al. Enhanced SOFI algorithm achieved with modified optical fluctuating signal extraction[J]. Optics Express, 2016, 24(3): 3037-3045.

[15] 李蕊, 屈惠明, 张运海, 等. 基于空间高斯滤波的超分辨光学波动成像算法[J]. 激光与光电子学进展, 2016, 53(8): 081001.

    Li R, Qu H M, Zhang Y H, et al. Super-resolution optical fluctuation imaging algorithm based on spatial Gaussian filter[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081001.

[16] 王雪花, 陈丹妮, 于斌, 等. 基于累积量标准差的超分辨光学涨落成像解卷积优化[J]. 物理学报, 2016, 65(19): 198701.

    Wang X H, Chen D N, Yu B, et al. Deconvolution optimization in super-resolution optical fluctuation imaging based on cumulant standard deviation[J]. Acta Physica Sinica, 2016, 65(19): 198701.

[17] 安坤, 王晶, 梁东, 等. 利用SOFI方法提高光片荧光显微镜横向分辨率[J]. 中国激光, 2017, 44(6): 0607002.

    An K, Wang J, Liang D, et al. Improving lateral resolution of light sheet fluorescence microscopy with SOFI method[J]. Chinese Journal of Lasers, 2017, 44(6): 0607002.

[18] Zeng Z, Chen X, Wang H. et al. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging[J]. Scientific Reports, 2015, 5: 8359.

[19] Gustafsson N, Culley S, Ashdown G. et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations[J]. Nature Communications, 2016, 7: 12471.

[20] Yahiatene I, Hennig S, Müller M. et al. Entropy-based super-resolution imaging (ESI): from disorder to fine detail[J]. ACS Photonics, 2015, 2(8): 1049-1056.

[21] Frantsuzov P, Kuno M, Janko B. et al. Universal emission intermittency in quantum dots, nanorods and nanowires[J]. Nature Physics, 2008, 4(7): 519-522.

[22] Brawand N P, Vörös M, Galli G. Surface dangling bonds are a cause of B-type blinking in Si nanoparticles[J]. Nanoscale, 2015, 7(8): 3737-3744.

[23] Kuno M, Fromm D, Hamann H. et al. "On"/"off" fluorescence intermittency of single semiconductor quantum dots[J]. Journal of Chemical Physics, 2001, 115(2): 1028-1040.

[24] Chozinski T J, Gagnon L A, Vaughan J C. Twinkle, twinkle little star: Photoswitchable fluorophores for super-resolution imaging[J]. FEBS Letters, 2014, 588(19): 3603-3612.

[25] 彭鼎铭, 付志飞, 徐平勇. 荧光蛋白与超分辨显微成像[J]. 光学学报, 2017, 37(3): 0318008.

    Peng D M, Fu Z P, Xu P Y. Fluorescent proteins and super-resolution microscopy[J]. Acta Optica Sinica, 2017, 37(3): 0318008.

[26] Bentolila L A, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging[J]. Journal of Nuclear Medicine, 2009, 50(4): 493-496.

[27] Hoyer P, Staudt T, Engelhardt J. et al. Quantum dot blueing and blinking enables fluorescence nanoscopy[J]. Nano Letters, 2010, 11(1): 245-250.

[28] Ruan G, Winter J O. Alternating-color quantum dot nanocomposites for particle tracking[J]. Nano Letters, 2011, 11(3): 941-945.

[29] Cutler P J, Malik M D, Liu S. et al. Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope[J]. PloS One, 2013, 8(5): e64320.

[30] Yaghini E, Giuntini F, Eggleston I M. et al. Fluorescence lifetime imaging and FRET-induced intracellular redistribution of Tat-conjugated quantum dot nanoparticles through interaction with a phthalocyanine photosensitiser[J]. Small, 2013, 10(4): 782-792.

[31] Geissbuehler S, Bocchio N L, Dellagiacoma C. et al. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI)[J]. Optical Nanoscopy, 2012, 1(1): 4.

[32] Cox S, Rosten E, Monypenny J. et al. Bayesian localization microscopy reveals nanoscale podosome dynamics[J]. Nature Methods, 2012, 9(2): 195-200.

[33] Hu Y S, Nan X, Sengupta P. et al. Accelerating 3B single-molecule super-resolution microscopy with cloud computing[J]. Nature Methods, 2013, 10(2): 96-97.

[34] Xu F, Zhang M, He W. et al. Live cell single molecule-guided Bayesian localization super resolution microscopy[J]. Cell Research, 2016, 27: 713-716.

[35] Agarwal K, Macháň R. Multiple signal classification algorithm for super-resolution fluorescence microscopy[J]. Nature Communications, 2016, 7: 13752.

[36] Gruber F K, Marengo E A, Devaney A J. Time-reversal imaging with multiple signal classification considering multiple scattering between the targets[J]. Journal of the Acoustical Society of America, 2004, 115(6): 3042-3047.

[37] Keller P J, Stelzer E H. Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy[J]. Current Opinion in Neurobiology, 2008, 18(6): 624-632.

[38] Cordes T, Strackharn M, Stahl S W. et al. Resolving single-molecule assembled patterns with superresolution blink-microscopy[J]. Nano Letters, 2009, 10(2): 645-651.

[39] Li Q, Wu S, Chou K C. Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging[J]. Biophysical Journal, 2009, 97(12): 3224-3228.

[40] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 2011, 65(9): 967-980.

[41] Tzeng Y K, Faklaris O, Chang B M. et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion[J]. Angewandte Chemie, 2011, 50(10): 2262-2265.

[42] Löschberger A, van de Linde S, Dabauvalle M C, et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution[J]. Journal of Cell Science, 2012, 125(3): 570-575.

[43] Göttfert F, Wurm C A, Mueller V. et al. Coaligned dual-channel sted nanoscopy and molecular diffusion analysis at 20 nm resolution[J]. Biophysical Journal, 2013, 105(1): L01-L03.

[44] Maglione M, Sigrist S J. Seeing the forest tree by tree: Super-resolution light microscopy meets the neurosciences[J]. Nature Neuroscience, 2013, 16(7): 790-797.

[45] Szymborska A, de Marco A, Daigle N, et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging[J]. Science, 2013, 341(6146): 655-658.

[46] Yamanaka M, Yonemaru Y, Kawano S. et al. Saturated excitation microscopy for sub-diffraction-limited imaging of cell clusters[J]. Journal of Biomedical Optics, 2013, 18(12): 126002.

[47] Liu Z, Xing D, Su Q P. et al. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space[J]. Nature Communications, 2015, 5: 4443.

[48] Zhao Z W, Roy R. Gebhardt J C M, et al. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy[J]. Proceedings of the National Academy of Sciences, 2014, 111(2): 681-686.

[49] Zhanghao K, Chen L, Wang M. et al. Super-resolution dipole orientation mapping via polarization demodulation[J]. Light: Science and Applications, 2016, 5(10): e16166.

[50] Chen X, Liu Z, Li R. et al. Multicolor super-resolution fluorescence microscopy with blue and carmine small photoblinking polymer dots[J]. ACS Nano, 2017, 11(8): 8084-8091.

[51] Avila J, Pallas N, Bolós M. et al. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies[J]. Expert Opinion on Therapeutic Targets, 2016, 20(6): 653-661.

[52] Huda M N, Kim D H, Erdene-Ochir E. et al. Expression, phosphorylation, localization, and microtubule binding of tau in colorectal cell lines[J]. Applied Biological Chemistry, 2016, 59(6): 807-812.

[53] Zhao Y, Mu X, Du G. Microtubule-stabilizing agents: New drug discovery and cancer therapy[J]. Pharmacology & Therapeutics, 2016, 162: 134-143.

[54] DuwéS, VandenbergW, DedeckerP. Live-cell monochromatic dual-label sub-diffraction microscopy by mt-pcSOFI[J]. Chemical Communications, 2017( 53): 7242- 7245.

[55] Scholefield J, Henriques R, Savulescu A F. et al. Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti[J]. Nature Communications, 2016, 7: 12629.

[56] Hu Y S, Zhu Q, Elkins K. et al. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells[J]. Optical Nanoscopy, 2013, 2(1): 7.

曾志平. 基于荧光随机涨落的超分辨显微成像[J]. 中国激光, 2018, 45(3): 0307009. Zeng Zhiping. Fluorescence Fluctuation-Based Super-Resolution Nanoscopy[J]. Chinese Journal of Lasers, 2018, 45(3): 0307009.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!