光学学报, 2014, 34 (6): 0628001, 网络出版: 2014-05-26   

基于F-P腔强度解调的微位移传感器

A Novel Fabry-Perot Micro-displacement Sensor Based on Intensity Demodulation Method
作者单位
南京师范大学物理科学与技术学院 江苏省光电技术重点实验室, 江苏 南京 210023
摘要
基于一次谐波腔长锁定技术,设计了一种基于法布里珀罗(F-P)腔干涉的强度解调型微位移传感器。系统对F-P腔的初始腔长进行动态锁定,通过将F-P腔腔长的微小变化转化为强度信号,实现直接快速地对待测目标的微位移进行测量。详细地阐述了位移传感器的理论模型及一次谐波锁定F-P腔腔长的技术方案,实验中采用商用的高精度压电陶瓷平移台(PZT)模拟了实际物体的运动状态,实验结果表明,该系统对峰峰值在λ/4(λ为光波波长)以内、频率不高于400 Hz的微位移有很好的测量结果,频率误差小于0.5 Hz,测量精度小于1 nm。
Abstract
According to the first harmonic cavity-length locking technology, a novel kind of micro-displacement sensor, which combines F-P interferometer and intensity demodulation method, has been developed. The initial length of the F-P cavity has been actively scanned and dynamically locked. And then the change of the F-P cavity-length induced by the motion of the target is coded on the variation of the optical output power of the cavity. As a consequence, a fast and direct micro-displacement sensing scheme through the intensity demodulation is available.The theoretical model of the displacement sensor and the technical scheme for actively locking the initial length of the F-P cavity through the first harmonic have been demonstrated in detail, respectively. Micro-displacement experiments provided by a commercial high-precision PZT with different vibrating parameters have been performed, and the experimental results agree well with the motion of the PZT within peak-to-peak amplitude of λ/4 and frequency is no more than 400 Hz. The frequency error is less than 0.5 Hz, and the total measurement accuracy is less than 1 nm.
参考文献

[1] 程晓辉, 赵洋, 李达成. F-P干涉仪在长度测量领域的应用[J]. 激光技术, 1999, 23(6): 134-137.

    Cheng Xiaohui, Zhao Yang, Li Dacheng. Applications of Fabry-Perot interferometer in length measurement [J]. Laser Technology, 1999, 23(6): 134-137.

[2] H G Craighead. Nanoelectromechanical systems[J]. Science, 2000, 290(5496): 1532-2000.

[3] 程晓辉, 赵洋, 李达成. 光学纳米测量方法及发展趋势[J]. 光学技术, 1999, 33(3): 73-77.

    Cheng Xiaohui, Zhao Yang, Li Dacheng. Review on optical nanometrology[J]. Optical Technique, 1999, 33(3): 73-77.

[4] 张乐, 吴波, 叶雯, 等. 基于光纤光栅法布里珀罗腔锁频原理的高灵敏度光纤振动传感器[J]. 光学学报, 2011, 31(4): 0406006.

    Zhang Le, Wu Bo, Ye Wen. Highly sensitive fiber-optic vibration sensor based on frequency-locking of a FBG Fabry-Perot cavity [J]. Acta Optica Sinica, 2011, 31(4): 0406006.

[5] 陈本永, 李达成, 朱若谷. 基于干涉条纹跟踪实现纳米级位移测量的方法研究[J]. 光学技术, 2006, 27(1): 63-67.

    Chen Benyong, Li Dacheng, Zhu Ruoguo. A lgorithm for automatic tracing of interference fringeand its application to nanometer measurement[J]. Optical Technique, 2006, 27(1): 63-67.

[6] 张涛, 冷长林, 钟莹. 基于激光差动多普勒效应的MEMS动态测试技术[J]. 光学学报, 2006, 27(1): 63-67.

    Zhang Tao, Leng Changlin, Zhong Ying. MEMS dynamic testing technique based on differential laser Doppler effect[J]. Acta Optica Sinica, 2006, 27(1): 63-67.

[7] C Bes, T Bosch, G Plantier, et al.. Characterization of a self-mixing displacement sensor under moderate feedback[J]. Opt Eng, 2006, 45(8): 084402.

[8] D F Han, M Wang, J P Zhou. Self-mixing speckle in an erbium-doped fiber ring laser and its application to velocity sensing[J]. IEEE Photon Technol Lett, 2007, 19(17-20): 1398-1400.

[9] 葛益娴, 王鸣, 陈绪兴. 基于强度解调的Fabry-Perot型光纤MEMS压力传感器[J]. 传感技术学报, 2006, 19(5): 1832-1834.

    Ge Yixian, Wang Ming, Chen Xuxing. A novel Fabry-Port MEMS fiber pressure sensor based on intensity demodulation method interferometry [J]. Chinese J Sensors and Actuators, 2006, 19(5): 1832-1834.

[10] Wei Xia, Ming Wang, Zhenyu Yang. High-accuracy sinusoidal phase-modulating self-mixing interferometer using an electro-optic modulator: development and evaluation [J]. Appl Opt, 2013, 52(4): B52-B59.

[11] X M H Huang, M Manolidis, Seong Chan Jun. Nanomechanical hydrogen sensing [J]. Appl Phys Lett, 2005, 86(14): 143104.

[12] C Meyer, H Lorenz, K Karrai. Optical detection of quasi-static actuation of nanoelectromechanical systems[J]. Appl Phys Lett, 2003, 83(12): 2420-2422.

[13] B E N Keeler, D W Carr, J P Sullivan. Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer[J]. Opt Lett, 2004, 29(11): 1182-1184.

[14] J Knuuttila, P Tikka, M Salomaa. Scanning Michelson interferometer for imaging surface acoustic wave field[J]. Opt Lett, 2000, 25(9): 613-615 .

[15] G Giuliani, et al.. Laser diode self-mixing technique for sensing applications[J]. Journal of Optics A: Pure and Applied Optics, 2002, S283-S294.

[16] D Guo, et al.. Self-mixing interferometer based on sinusoidal phase modulating technique [J]. Opt Express, 2005, 13(5): 1537-1543.

[17] Michael Yagoda Shagam. Nanomechanical Displacement Detection Using Fiber Optic Interferometry[D]. Boston: Boston University, 2004. 13-37.

李春成, 王鸣, 夏巍, 刘强, 郝辉. 基于F-P腔强度解调的微位移传感器[J]. 光学学报, 2014, 34(6): 0628001. Li Chuncheng, Wang Ming, Xia Wei, Liu Qiang, Hao Hui. A Novel Fabry-Perot Micro-displacement Sensor Based on Intensity Demodulation Method[J]. Acta Optica Sinica, 2014, 34(6): 0628001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!