激光与光电子学进展, 2014, 51 (2): 020002, 网络出版: 2014-01-21   

基于空间光调制器的光学显微成像技术 下载: 1403次

Optical Microscopic Imaging Technology Based on Spatial Light Modulator
作者单位
郑州大学物理工程学院, 河南 郑州 450001
摘要
空间光调制器(SLM)是一种对光波的光场分布进行调制的元件。它广泛应用于光信息处理、光束变换和输出显示等诸多应用领域。随着高分辨率空间光调制器在光学显微成像系统中的应用,大大提高了显微振幅和相位样品显微成像的分辨率和对比度,不仅能够实现各种传统的相位显微技术,而且能够灵活地以更复杂的相位调制方式实现新的显微成像。在光学显微系统中,SLM不仅用以控制样品照明光束,同时能作为空间傅里叶滤波器用于成像光路,综述了SLM在光学显微系统中的多种灵活应用。
Abstract
Spatial light modulator (SLM) is a kind of optical modulating elements for the optical field distribution. It is widely used in optical information processing, beam transformation, output display and many other application fields. With the wide applications of high-resolution SLMs, the microscopic imaging resolution and contrast of phase and amplitude samples are enhanced greatly, which can not only achieve traditional phase microscopic techniques,but also achieve new type microscopic imaging with a more complicated way and flexibility to modulate phase. In microscopy SLM can not only be used to control the sample illumination, but also act as spatial Fourier filters in the imaging path. Some of these flexible applications are reviewed in this article.
参考文献

[1] D Axelrod. Cell-substrate contacts illuminated by total internal reflection fluorescence[J]. J Cell Biol, 1981, 89(1): 141-145.

[2] Olga Gliko, Gaddum D Reddy, Bahman Anvari, et al.. Standing wave total internal reflection fluorescence microscopy to measure the size of nanostructures in living cells[J]. J Biomed Opt, 2006, 11(6): 0640131.

[3] Peter Kner, Bryant B Chhun, Erie R Griffis, et al.. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339-342.

[4] A Rasmussen, V Deckert. New dimension in nanoimaging: breaking through the diffraction limit with scanning near-field optical microscopy[J]. Anal Bioanal Chem, 2005, 381(1): 165-172.

[5] Eric Betzig, Jay K Trautman. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science, 1992, 257(5067): 189-195.

[6] Reddick R C, Warmack R J, Chilcott, D W, et al.. Photon scanning tunneling microscopy[J]. Rev Sci Instrum, 1990, 61(12): 3669-3677.

[7] J B Pendry. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(18): 3966-3969.

[8] Zhaowei Liu, Stephane Durant, Hyesog Lee, et al.. Far-field optical superlens[J]. Nano Lett, 2007, 7(2): 403-408.

[9] Zhaowei Liu, Stephane Durant, Hyesog Lee, et al.. Experimental studies of far-field superlens for sub-diffractional optical imaging[J]. Opt Exp, 2007, 5(11): 6947-6954.

[10] Klar T A, Jakobs S, Dyba M, et al.. Fluorescence microscopy with diffraction resolution limit broken by stimulated emission[J]. Proc Natl Acad Sci, 2000, 97(15): 8206-8210.

[11] Mats G L Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proc Natl Acad Sci, 2005, 102(37): 13081-13086.

[12] B Hein, K I Willig, S W Hell. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell[J]. Proc Natl Acad Sci, 2008, 105(38): 14271-14276.

[13] F Zernike. Diffraction theory of the knife-edge test and its improved form, the phase-contrast method[J]. Mon Not R Astron Soc, 1934, 94(5): 377-384.

[14] F Zernike. Phase contrast, a new method for the microsopic observation of transparent objects[J]. Physica, 1942, 9(10): 686-698.

[15] Jack G Dodd. Interferometry with Schlieren microscopy[J]. Appl Opt, 1977, 16(2): 470-472.

[16] M Arnison, K Larkin, C Sheppard, et al.. Linear phase imaging using differential interference contrast microscopy[J]. J Microsc, 2004, 214(Pt1): 7-12.

[17] M Schmitt, B Dietzek, G Hermann, et al.. Femtosecond time-resolved spectroscopy on biological photoreceptor chromophores[J]. Laser & Photon Rev, 2007, 1(1): 57-78.

[18] M Heilemann, P Dedecker, J Hofkens, et al.. Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification[J]. Laser & Photon Rev, 2009, 3(1-2): 180-202.

[19] M Hacker, G Stobrawa, R Sauerbrey, et al.. Micromirror SLM for femtosecond pulse shaping in the ultraviolet[J ]. Appl Phys B, 2003, 76(6): 711-714.

[20] 于晓晨, 胡家升, 王连宝. 基于液晶空间光调制器的激光束整形[J]. 光学学报, 2012, 32(5): 0514001.

    Yu Xiaochen, Hu Jiasheng, Wang Lianbao. Laser beam shaping based on liquid-crystal spatial light modulator[J]. Acta Optica Sinica, 2012, 32(5): 0514001.

[21] 邱基斯, 樊仲维, 唐熊忻. 液晶空间光调制器Gamma曲线的线性化调试算法及其对光束整形的影响[J]. 激光与光电子学进展, 2012, 49(6): 061402.

    Qiu Jisi, Fan Zhongwei, Tang Xiongxin. New adjustment method for Gamma curve of liquid crystal spatial light modulator and its effect on beam shaping[J]. Laser & Optoelectronics, 2012, 49(6): 061402.

[22] E Frumker, Y Silberberg. Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator[J]. Opt Lett, 2007, 32(11): 1384-1386.

[23] G Sinclair, J Leach, P Jordan, et al.. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping[J]. Opt Express, 2004, 12(8): 1665-1670.

[24] G M Hagen, W Caarls, M Thomas, et al.. Biological applications of an LCOS-based programmable array microscope (PAM)[C]. SPIE, 2007, 6441: 64410S.

[25] K Leonhardt, U Droste, H J Tiziani. Microshape and rough-surface analysis by fringe projection[J]. Appl Opt, 1994, 33(31): 7477-7488.

[26] L Hirvonen, K Wicker, O Mandula, et al.. Structured illumination microscopy of a living cell[J]. Eur Biophys J, 2009, 38(6): 807-812.

[27] S Monneret, M Rauzi, P F Lenne. Highly flexible whole-field sectioning microscope with liquid-crystal light modulator[J]. J Opt A: Pure Appl Opt, 2006, 8(7): S461-S466.

[28] R Fiolka, M Beck, A Stemmer. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator[J]. Opt Lett, 2008, 33(14): 1629-1631.

[29] J Y Lin, R P Huang, P S Tsai, et al.. Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator[J]. J Opt A: Pure Appl Opt, 2009, 11(1): 015301.

[30] C Maurer, S Bernet, M Ritsch-Marte. Refining common path interferometry with a spiral-phase Fourier filter[J]. J Opt A: Pure Appl Opt, 2009, 11(8): 094023.

[31] S Furhapter, A Jesacher, S Bernet, et al.. Spiral phase contrast imaging in microscopy[J]. Opt Express, 2005, 13(3): 689-694.

[32] Ruth Steiger, Stefan Bernet, Monika Ritsch-Marte. SLM-based off-axis Fourier filtering in microscopy with white light illumination[J]. Opt Express, 2012, 20(14): 15377-15384.

[33] Timothy J McIntyre, C Maurer, S Bernet, et al.. Differential interference contrast imaging using a spatial light modulator[J]. Opt Lett, 2009, 34(19): 2988-2990.

[34] T J McIntyre, C Maurer, S Fassl, et al.. Quantitative SLM-based differential interference contrast imaging[J]. Opt Express, 2010, 18(13): 14063-14078.

[35] L Allen, M W Beijersbergen, R J C Spreeuw, et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian lasermodes[J]. Phys Rev A, 1992, 45(11): 8185-8189.

[36] Jeffrey A Davis, Dylan E McNamara, Don M Cottrell, et al.. Image processing with the radial Hilbert transform: theory and experiments[J]. Opt Lett, 2000, 25(2): 99-101.

[37] Severin Fürhapter, Alexander Jesacher, Stefan Bernet, et al.. Spiral phase contrast imaging in microscopy[J]. Opt Express, 2005, 13(3): 689-694.

[38] A M Blackburn, J C Loudon. Vortex beam production and contrast enhancement from a magnetic spiral phase plate[J]. Ultramicroscopy, 2014, 136: 127-143.

[39] Alexander Jesacher, Severin Furhapter, Stefan Bernet, et al.. Shadow effects in spiral phase contrast microscopy[J]. Phys Rev Lett, 2005, 94(23): 233902.

[40] Christian Maurer, Alexander Jesacher, Stefan Bernet, et al.. What spatial light modulators can do for optical microscopy[J]. Laser & Photon Rev, 2011, 5(1): 81-101.

[41] A Barty, K Nugent, D Paganin, et al.. Quantitative optical phase microscopy[J]. Opt Lett, 1998, 23(11): 817-819.

[42] K R Lee, K Kim, J Jung, et al.. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications[J]. Sensors, 2013, 13(4): 4170-4191.

[43] I Iglesias, F Vargas-Martin. Quantitative phase microscopy of transparent samples using a liquid crystal display[J]. J Biomed Opt, 2013, 18(2): 026015.

[44] P Ferraro, D Alferi, S D Nicola, et al.. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction[J]. Opt Lett, 2006, 31(10): 1405-1407.

[45] P Marquet, B Rappaz, P J Magistretti, et al.. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Opt Lett, 2005, 30(5): 468-470.

[46] A Y M Ng, C W See, M G Somekh. Quantitative optical microscope with enhanced resolution using a pixelated liquid crystal spatial light modulator[J]. J Microsc, 2004, 214(Pt3): 334-340.

[47] 马利红, 王 辉, 金洪震, 等. 数字全息显微定量相位成像的实验研究[J]. 中国激光, 2012, 39(3): 0309002.

    Ma Lihong, Wang Hui, Jin Hongzhen, et al.. Experimental study on quantitative phase imaging by digital holographic microscopy[J]. Chinese J Lasers, 2012, 39(3): 0309002.

[48] M Baranek, Z Bouchal. Rotating vortex imaging implemented by a quantized spiral phase modulation[J]. J Europ Opt Soc Rap Public, 2013, 8: 13017.

[49] Ruth Steiger, Stefan Bernet, Monika Ritsch-Marte. Mapping of phase singularities with spiral phase contrast microscopy[J]. Opt Express, 2013, 21(14): 16282-16289.

[50] Marcel A Lauterbach, Marc Guillon1, Asma Soltani, et al.. STED microscope with spiral phase contrast[J]. Scientific Reports, 2013, 3: 2050.

[51] M P Lee, G M Gibson, R Bowman, et al.. A multi-modal stereo microscope based on a spatial light modulator[J]. Opt Express, 2013, 21(14): 16541-16551.

[52] C Maurer, A Jesacher, S Bernet, et al.. Phase contrast microscopy with full numerical aperture illumination[J]. Opt Express, 2008, 16(24): 19821-19829.

杜艳丽, 马凤英, 弓巧侠, 郭茂田, 梁二军. 基于空间光调制器的光学显微成像技术[J]. 激光与光电子学进展, 2014, 51(2): 020002. Du Yanli, Ma Fengying, Gong Qiaoxia, Guo Maotian, Liang Erjun. Optical Microscopic Imaging Technology Based on Spatial Light Modulator[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!