激光与光电子学进展, 2020, 57 (11): 111431, 网络出版: 2020-06-02   

基于空间光调制器的超快激光加工原理及应用 下载: 2672次特邀综述

Principles and Applications of Ultrafast Laser Processing Based on Spatial Light Modulators
刘思垣 1,2张静宇 1,2,*
作者单位
1 华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
2 华中科技大学信息存储系统教育部重点实验室, 湖北 武汉 430074
引用该论文

刘思垣, 张静宇. 基于空间光调制器的超快激光加工原理及应用[J]. 激光与光电子学进展, 2020, 57(11): 111431.

Siyuan Liu, Jingyu Zhang. Principles and Applications of Ultrafast Laser Processing Based on Spatial Light Modulators[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111431.

参考文献

[1] Couairon A, Sudrie L, Franco M, et al. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses[J]. Physical Review B, 2005, 71(12): 125435.

[2] Tamaki T, Watanabe W, Nishii J, et al. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics, 2005, 44(20/21/22/23): L687-L689.

[3] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412: 697-698.

[4] Friedman N J, Palanker D V, Schuele G, et al. Femtosecond laser capsulotomy[J]. Journal of Cataract & Refractive Surgery, 2011, 37(7): 1189-1198.

[5] Drevinskas R, Beresna M, Zhang J Y, et al. Ultrafast laser-induced metasurfaces for geometric phase manipulation[J]. Advanced Optical Materials, 2017, 5(1): 1600575.

[6] Liao Y, Song J X, Li E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 2012, 12(4): 746-749.

[7] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 1989, 245(4920): 843-845.

[8] Yong J L, Chen F, Yang Q, et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. Journal of Materials Chemistry A, 2014, 2(23): 8790-8795.

[9] Huang X J, Guo Q Y, Yang D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2020, 14(2): 82-88.

[10] Kim D, Keesling A, Omran A, et al. Large-scale uniform optical focus array generation with a phase spatial light modulator[J]. Optics Letters, 2019, 44(12): 3178-3181.

[11] Zhang C C, Hu Y L, Du W Q, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Scientific Reports, 2016, 6: 33281.

[12] Yang D, Liu L P, Gong Q H, et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering[J]. Macromolecular Rapid Communications, 2019, 40(8): 1970017.

[13] Allegre O J, Jin Y, Perrie W, et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing[J]. Optics Express, 2013, 21(18): 21198-21207.

[14] Gauthier G, Lenton I. McKay Parry N, et al. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials[J]. Optica, 2016, 3(10): 1136-1143.

[15] Dana D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 2003, 4985: 14-25.

[16] Zhang Z C, You Z, Chu D P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices[J]. Light: Science & Applications, 2014, 3(10): e213.

[17] Reichelt S. Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators[J]. Applied Optics, 2013, 52(12): 2610-2618.

[18] Cotter L K, Drabik T J, Dillon R J, et al. Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator[J]. Optics Letters, 1990, 15(5): 291-293.

[19] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-246.

[20] Soifer VA. Iteractive methods for diffractive optical elements computation[M]. London: CRC Press, 2014.

[21] Dufresne E R, Spalding G C, Dearing M T, et al. Computer-generated holographic optical tweezer arrays[J]. Review of Scientific Instruments, 2001, 72(3): 1810.

[22] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Optics Communications, 2002, 207(1/2/3/4/5/6): 169-175.

[23] di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 2007, 15(4): 1913-1922.

[24] Poland S P. Krstaji N, Knight R D , et al. Development of a doubly weighted Gerchberg-Saxton algorithm for use in multibeam imaging applications[J]. Optics Letters, 2014, 39(8): 2431-2434.

[25] Zhang J. erkauskait A, Drevinskas R , et al. Eternal 5D data storage by ultrafast laser writing in glass[J]. Proceedings of SPIE, 2016, 9736: 97360U.

[26] Yang G Z, Dong B Z, Gu B Y, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 1994, 33(2): 209-218.

[27] 颜树华. 加权杨顾算法研究[J]. 光子学报, 2007, 36(3): 530-535.

    Yan S H. Research on the weighted Yang-Gu algorithm[J]. Acta Photonica Sinica, 2007, 36(3): 530-535.

[28] Bengtsson J. Kinoform design with an optimal-rotation-angle method[J]. Applied Optics, 1994, 33(29): 6879-6884.

[29] Lin H, Jia B H, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication[J]. Optics Letters, 2011, 36(3): 406-408.

[30] Pang H, Wang J Z, Zhang M, et al. Non-iterative phase-only Fourier hologram generation with high image quality[J]. Optics Express, 2017, 25(13): 14323-14333.

[31] Mengu D, Ulusoy E, Urey H. Non-iterative phase hologram computation for low speckle holographic image projection[J]. Optics Express, 2016, 24(5): 4462-4476.

[32] Zhang J Z, Pégard N, Zhong J S, et al. 3D computer-generated holography by non-convex optimization[J]. Optica, 2017, 4(10): 1306-1313.

[33] Makowski M. Iterative design of multiplane holograms: experiments and applications[J]. Optical Engineering, 2007, 46(4): 045802.

[34] Sinclair G, Leach J, Jordan P, et al. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping[J]. Optics Express, 2004, 12(8): 1665-1670.

[35] Ren H R, Lin H, Li X P, et al. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array[J]. Optics Letters, 2014, 39(6): 1621-1624.

[36] Pozzi P, Maddalena L, Ceffa N, et al. Fast calculation of computer generated holograms for 3D photostimulation through compressive-sensing gerchberg-saxton algorithm[J]. Methods and Protocols, 2018, 2(1): 2.

[37] Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1/2/3): 503-528.

[38] Curtis F E, Que X C. A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees[J]. Mathematical Programming Computation, 2015, 7(4): 399-428.

[39] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9): 1117-1125.

[40] Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004-1008.

[41] Wiecha P R, Lecestre A, Mallet N, et al. Pushing the limits of optical information storage using deep learning[J]. Nature Nanotechnology, 2019, 14(3): 237-244.

[42] Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography[J]. Applied Optics, 2018, 57(14): 3859-3863.

[43] Pasienski M. DeMarco B. A high-accuracy algorithm for designing arbitrary holographic atom traps[J]. Optics Express, 2008, 16(3): 2176-2190.

[44] Montes-Usategui M, Pleguezuelos E, Andilla J, et al. Fast generation of holographic optical tweezers by random mask encoding of Fourier components[J]. Optics Express, 2006, 14(6): 2101-2107.

[45] Williams H E, Luo Z Y, Kuebler S M. Effect of refractive index mismatch on multi-photon direct laser writing[J]. Optics Express, 2012, 20(22): 25030-25040.

[46] Marcinkevi ius A, Mizeikis V, Juodkazis S, et al. Effect of refractive index-mismatch on laser microfabrication in silica glass[J]. Applied Physics A: Materials Science & Processing, 2003, 76(2): 257-260.

[47] Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction[J]. Optics Express, 2010, 18(20): 21090-21099.

[48] Salter P S, Booth M J. Focussing over the edge: adaptive subsurface laser fabrication up to the sample face[J]. Optics Express, 2012, 20(18): 19978-19989.

[49] Sun Q, Jiang H B, Liu Y, et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(11): 655-659.

[50] Booth M J, Schwertner M, Wilson T, et al. Predictive aberration correction for multilayer optical data storage[J]. Applied Physics Letters, 2006, 88(3): 031109.

[51] Itoh H, Matsumoto N, Inoue T. Spherical aberration correction suitable for a wavefront controller[J]. Optics Express, 2009, 17(16): 14367-14373.

[52] Salter P S, Woolley M J, Morris S M, et al. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation[J]. Optics Letters, 2018, 43(24): 5993-5996.

[53] Wang P, Qi J, Liu Z M, et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing[J]. Scientific Reports, 2017, 7: 41211.

[54] Stone A, Jain H, Dierolf V, et al. Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating[J]. Journal of the Optical Society of America B, 2013, 30(5): 1234-1240.

[55] Kato J I, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 2005, 86(4): 044102.

[56] Kamali S M, Arbabi E, Arbabi A, et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 2016, 10(6): 1002-1008.

[57] Hayasaki Y, Sugimoto T, Takita A, et al. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 2005, 87(3): 031101.

[58] Obata K, Koch J, Hinze U, et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation[J]. Optics Express, 2010, 18(16): 17193-17200.

[59] Zandrini T, Shan O M, Parodi V, et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine[J]. Scientific Reports, 2019, 9: 11761.

[60] Gittard S D, Nguyen A, Obata K, et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2011, 2(11): 3167-3178.

[61] Zhang J Y. Gecevi ius M, Beresna M, et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 2014, 112(3): 033901.

[62] Silvennoinen M, Kaakkunen J, Paivasaari K, et al. Parallel microstructuring using femtosecond laser and spatial light modulator[J]. Physics Procedia, 2013, 41: 693-697.

[63] Li J N, Tang Y, Kuang Z, et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators[J]. Optics and Lasers in Engineering, 2019, 112: 59-67.

[64] Liu L P, Yang D, Wan W P, et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction[J]. Nanophotonics, 2019, 8(6): 1087-1093.

[65] Hernandez O, Papagiakoumou E, Tanese D, et al. Three-dimensional spatiotemporal focusing of holographic patterns[J]. Nature Communications, 2016, 7: 11928.

[66] Sun B S, Salter P S, Roider C, et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time[J]. Light: Science & Applications, 2018, 7(1): 17117.

[67] Saha S K, Wang D E, Nguyen V H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105-109.

[68] Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping[J]. Journal of the Optical Society of America B, 1988, 5(8): 1563-1572.

[69] Ma J, Cheng W J, Zhang S A, et al. Coherent quantum control of two-photon absorption and polymerization by shaped ultrashort laser pulses[J]. Laser Physics Letters, 2013, 10(8): 085304.

[70] Zheng Y, Yao Y H, Deng L Z, et al. Valence state manipulation of Sm 3+ ions via a phase-shaped femtosecond laser field[J]. Photonics Research, 2018, 6(2): 144.

[71] Zhao Y F, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 2015, 40(21): 4843-4846.

[72] Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 2007, 32(24): 3549-3951.

[73] Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 2017, 25(21): 25697-25706.

[74] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

[75] Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567-570.

[76] Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam[J]. Applied Physics Letters, 2013, 102(8): 084103.

[77] Yang L, Qian D D, Xin C, et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Applied Physics Letters, 2017, 110(22): 221103.

[78] Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 2017, 6(7): e17011.

[79] Wang C W, Yang L, Hu Y L, et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects[J]. ACS Nano, 2019, 13(4): 4667-4676.

刘思垣, 张静宇. 基于空间光调制器的超快激光加工原理及应用[J]. 激光与光电子学进展, 2020, 57(11): 111431. Siyuan Liu, Jingyu Zhang. Principles and Applications of Ultrafast Laser Processing Based on Spatial Light Modulators[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111431.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!