红外与毫米波学报, 2016, 35 (1): 1, 网络出版: 2016-03-22  

等离子体材料银铟合金光学性质的组分依赖性

Composition-dependent optical properties of plasmonic AgxIn1-x alloys
作者单位
复旦大学 光科学与工程系,上海超精密光学制造工程技术研究中心,上海 200433
摘要
采用磁控溅射方法在硅衬底上生长了五个不同组分的银铟合金薄膜.采用椭圆偏振光谱仪研究银铟合金薄膜的光学性质.银基金属薄膜一般在3.9 eV附近出现典型的带间跃迁.随着铟含量的增加,银铟合金薄膜的介电函数呈现出明显增加的趋势,典型带间跃迁能量也出现蓝移.结果表明,银铟合金薄膜的光学性质可以通过其中铟元素的含量进行调控.Ag0.93In0.07薄膜比其他四种组分的银铟合金薄膜有着更大的品质因子(Q因子),而且在一些波段甚至比纯金属金和铜的Q因子都要大,这表明银铟合金材料具有成为新型等离子体材料的潜力.
Abstract
Five samples of Ag-In alloy films with different compositions were deposited on Si substrates by magnetron sputtering. The optical properties of these films were studied by spectroscopic ellipsometry. The dielectric functions of the alloy films significantly increase as the In concentration in the Ag-In alloy films is increased. For Ag-based alloys, a typical interband transition occurs near 3.9 eV. In the tested alloy films, however, this transition energy exhibits a blue shift with increasing In concentration. The optical properties of the alloy films were found to be tunable by varying their In concentrations. The values of the Quality (Q) factors of the Ag0.93In0.07 film are higher than those of other alloy films. At a certain wavelength range, the alloys’ Q factors even exceed those of pure Au and Cu. Our results show that Ag-In alloys have significant potential for application in metamaterials and plasmonic devices.
参考文献

[1] Alu A, Engheta N. Plasmonic and metamaterial cloaking: physical mechanisms and potentials[J]. Journal of Optics A: Pure and Applied Optics, 2008,10: 093002.

[2] Zentgraf T, LIU Yong-Min, Mikkelsen M H, et al. Plasmonic Luneburg and Eaton lenses[J]. Nature Nanotechnology, 2011, 6: 151-155.

[3] FU Yong-Qi, ZHOU Xiu-Li. Plasmonic Lenses: A Review[J]. Plasmonics, 2010, 5: 287-310.

[4] Pendry J B. Negative Refraction Makes a Perfect Lens[J]. Physical Review Letters, 2000, 85: 3966-3969.

[5] Blaber M G, Arnold M D, Ford M J. Designing materials for plasmonic systems: the alkali-noble intermetallics[J]. Journal of Physics: Condensed Matter, 2010, 22: 095501.

[6] Boltasseva A, Atwater H A. Low-Loss Plasmonic Metamaterials[J]. Science, 2011, 331: 290.

[7] Noginov M A, Zhu G, Bahoura M, et al. The effect of gain and absorption on surface plasmons in metal nanoparticles[J]. Applied Physics B: Lasers and Optics, 2007, 86: 455-460.

[8] Noginov M A, Podolskiy V A, Zhu G, et al. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium[J]. Optics Express, 2008, 16: 1385-1392.

[9] Khurgin J B, Sun G. In search of the elusive lossless metal[J]. Applied Physics Letters, 2010, 96: 181102.

[10] Thylén L, Holmstrm P, Bratkovsky A, et al. Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials[J]. IEEE Journal of Quantum Electronics, 2010, 46(4): 518-524.

[11] West P R, Ishii S, Naik G V, et al. Searching for better plasmonic materials[J]. Laser Photonics Review, 2010, 4: 795.

[12] Rivory J. Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopic[J]. Physical Review B, 1977, 15(6): 3119-3135.

[13] SONG Jin-Tao, LI He-Yin, LI Jing, et al. Fabrication and optical properties of metastable Cu-Ag alloys[J]. Applied Optics, 2002, 41: 5413.

[14] Morgan R M, Lynch D W. Optical Properties of Dilute Ag-In Alloys[J]. Physical Review, 1968, 172(3): 628-640.

[15] Wronkowska A A, Wronkowski A, Bukaluk A, et al. Structural analysis of In/Ag, In/Cu and In/Pd thin films on tungsten by ellipsometric, XRD and AES methods[J]. Applied Surface Science, 2008, 254: 4401-4407.

[16] May R A, Kondrachova L, Hahn B P, et al. Optical Constants of Electrodeposited Mixed Molybdenum-Tungsten Oxide Films Determined by Variable-Angle Spectroscopic Ellipsometry[J]. The Journal of Chemical Physics C, 2007, 111: 18251-18257.

[17] Tompkins H G, Mcgahan W A. Spectroscopic Ellipsometry and Reflectometry: A User’s Guide[M], New York: Wiley Inter-Science,1999.

[18] CHEN Liang-Yao, FENG Xing-Wei, SU Yi, et al. Design of a scanning ellipsometer by synchronous rotation of the polarizer and analyzer[J]. Applied Optics, 1994, 33(7): 1299-1305.

[19] Barron L W, Neidrich J, Kurinec S K. Optical, electrical and structural properties of sputtered aluminum alloy thin films with copper, titanium and chromium additions[J]. Thin Solid Films, 2007, 515: 3363.

[20] Woltgens H, Friedrich I, Njorog W K, et al. Optical electrical and structural properties of Al-Ti and Al-Cr thin films[J]. Thin Solid Films, 2001, 388: 237-244.

[21] Mookerji B, Stratman M, Wall M, et al. The optical constants of gallium stabilized δ-plutonium metal between 0.7 and 4.3 eV measured by spectroscopic ellipsometry using a double-windowed experimental chamber[J]. Journal of Alloys and Compounds, 2007, 444: 339-341.

[22] Pells G P, Montgomery H. The optical properties of α-phase Cu-Zn, Cu-Ga, Cu-Ge and Cu-As alloys[J]. Metal Physics Supplement, 1970, 3: s330.

[23] Palik E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1985.

[24] Wooten F. Optical Properties of Solids[M]. New York: Academic Press, 1972.

[25] Allen J W, Lucovsky G, Mikkelsen J C. Optical properties and electronic structure of crossroads material MnTe[J]. Solid State Communications, 1977, 24(5): 367-370.

[26] Smith J B, Ehrenreich H. Frequency dependence of the optical relaxation time in metals[J]. Physical Review B, 1982, 25(2): 923.

[27] Thompson B V. Neutron Scattering by an Anharmonic Crystal[J]. Physical Review, 1963, 131(4): 1420.

[28] Kim K J, Chen L Y, Lynch D W. Ellipsometric study of optical transitions in Ag1-xInx alloys[J]. Physical Review B, 1988, 38(18): 13107.

[29] O’Learya S K. An analytical density of states and joint density of states analysis of amorphous semiconductors[J]. Journal of Applied Physics, 2004, 96(7): 3680.

[30] Liang W Y, Beal A R. A study of the optical joint density-of-states function[J]. Solid State Physics, 1976, 9: 2824-2833.0015

杨尚东, 郑玉祥, 张冬旭, 张金波, 胡二涛, 张荣君, 王松有, 陈良尧. 等离子体材料银铟合金光学性质的组分依赖性[J]. 红外与毫米波学报, 2016, 35(1): 1. YANG Shang-Dong, ZHENG Yu-Xiang*, ZHANG Dong-Xu, ZHANG Jin-Bo, HU Er-Tao, ZHANG Rong-Jun, WANG Song-You, CHEN Liang-Yao. Composition-dependent optical properties of plasmonic AgxIn1-x alloys[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!