光谱学与光谱分析, 2010, 30 (3): 710, 网络出版: 2010-07-23  

稻干尖线虫病胁迫水稻叶片波谱响应特征及识别研究

Discrimination and Spectral Response Characteristic of Stress Leaves
作者单位
1 浙江大学农业遥感与信息技术应用研究所, 浙江 杭州 310029
2 国家农业信息
摘要
对植被病害的精确识别是采取植保措施的前提, 同时对喷施农药也具有积极的指导作用。 比较了受稻干尖线虫胁迫水稻叶片和健康叶片色素含量、 光谱反射率、 高光谱特征参数, 受害水稻叶片与健康叶片相比, 叶绿素和类胡萝卜素含量分别降低18%和22%; 光谱反射率在蓝紫光、 绿光和红光谱段分别增加1.5, 1和2.3倍, 在近红外和短波红外区域分别降低约28.9%和26.3%, 红边和蓝边分别蓝移约8和10 nm, 绿峰和红谷分别红移约8.5和6 nm。以红边面积和红边位置作为C-SVC(非线性软间隔分类机)的输入向量, 对受害和健康叶片进行识别, 精度为100%。 研究表明, 水稻叶片光谱对病害胁迫具有显著的响应特征, 利用C-SVC对受害和健康叶片进行辨别的方法是可行的。Infected by Rice Aphelenchoides besseyi Christie
Abstract
An ASD Field Spec Pro Full Range spectrometer was used to acquire thespectral reflectance of healthy and diseased leaves infected by riceAphelenchoides besseyi Christie, which were cut from rice individuals in thepaddy field. Firstly, foliar pigment content was investigated. As compared withhealthy leaves, the total chlorophyll and carotene contents (mg?g-1) of diseasedleaves decreased 18% and 22%, respectively. The diseased foliar content ratio oftotal chlorophyll to carotene was nearly 82% of the healthy ones. Secondly, theresponse characteristics of hyperspectral reflectance of diseased leaves wereanalyzed. The spectral reflectance in the blue (450-520 nm), green (520-590 nm)and red (630-690 nm) regions were 2.5, 2 and 3.3 times the healthy onesrespectively due to the decrease in foliar pigment content, whereas in the nearinfrared (NIR, 770-890 nm) region was 71.7 of the healthy ones because of leaftwist, and 73.7% for shortwave infrared (SWIR, 1 500-2 400 nm) region, owing towater loss. Moreover, the hyperspectral feature parameters derived from the rawspectra and the first derivative spectra were analyzed. The red edge position(REP) and blue edge position (BEP) shifted about 8 and 10 nm toward the shortwavelengths respectively. The green peak position (GPP) and red trough position(RTP) shifted about 8.5 and 6 nm respectively toward the longer wavelengths.Finally, the area of the red edge peak (the sum of derivative spectra from 680 to740 nm) and red edge position (REP) as the input vectors entered into C-SVC,which was an soft nonlinear margin classification method of support vectormachine, to recognize the healthy and diseased leaves. The kernel function wasradial basis function (RBF) and the value of punishment coefficient (C) wasobtained from the classification model of training data sets (n=138). Theperformance of C-SVC was examined with the testing sample (n=126), and healthyand diseased leaves could be successfully differentiated without errors. Thisresearch demonstrated that the response feature of spectral reflectance wasobvious to disease stress in rice leaves, and it was feasible to discriminatediseased leaves from healthy ones based on C-SVC model and hyperspectralreflectance.Christie; Derivative spectrum; Support vector classification machine(SVC)
参考文献

[1] West J S, Bravo C, Oberit R, et al. Annual Review of

    Phytopathology, 2003, 41: 593.

[2] Penuelas J, Filella L. Trends in Plant Science, 1998, 3(4): 151.

[3] Sensing, 2009, 64(1): 47.

    Beeri O, Peled A. ISPRS Journal of Photogrammetric and Remote

[4] WANG Ji-hua, ZHAO Chun-jiang, HUANG Wen-jiang(王纪华, 赵春江, 黄文

    遥感基础与应用). Beijing: Science Press(北京: 科学出版社), 2008. 356.

    江). Basis and Application of Quantitative Remote Sensing in Agriculture(农业定量

[5] Malthus T J, Madeira A C. Remote Sensing of Environment, 1993, 45:

    107.

[6] Vigier B J, Elizabeth P, Strachan Ian B. IEEE Geosciences and

    Remote Sensing Letters, 2004, 1(4): 255.

[7] Sensing, 2006, 27(4): 737.

    Liu L Y, Wang J H, Bao Y S, et al. International Journal of Remote

[8] Adams M L, Philpot W D, Norell W A. International Journal of Remote

    Sensing, 1999, 20(18): 3663.

[9] Kobayashi T, Kanda E, Kitada K, et al. Phytopathology, 2001, 91

    (3): 316.

[10] 等). China Plant Protection(中国植保导刊), 2005, 25(11): 8.

    AN Hu, WANG Hai-guang, LIU Rong-ying, et al(安虎, 王海光, 刘荣英,

[11] ). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(12): 2475.

    JIANG Jin-bao, CHEN Yun-hao, HUANG Wen-jiang(蒋金豹, 陈云浩, 黄文江

[12] HUANG Mu-yi, HUANG Yi-de, HUANG Wen-jiang, et al(黄木易, 黄义德, 黄

    文江, 等). Journal of Anhui Agricultural Sciences(安徽农业科学), 2004, 32(1):

    132.

[13] Shanghai Scientific and Technical Publishers(上海: 上海科学技术出版社), 2006.

    Rice Disease and Its Protection in China(中国水稻病害及其防治). Shanghai:

    HONG Jian-ming, TONG Xian-ming, XU Fu-shou(洪剑鸣, 童贤明, 徐福寿).

    228.

[14] Cristianini N, Shawe-Taylor J. An Introduction to Support Vector

    Machines and Other Kernel-Based Learning Methods. London: Cambridge University

    Press, 2000. 103.

[15] YI Qiu-xiang, HUANG Jing-feng, WANG Fu-min, et al. Journal of

    Zhejiang University, Science B, 2008, 9(5): 378.

[16] Cloutis E A. International Journal of Remote Sensing, 1996, 17(12):

    2215.

[17] 高等教育出版社), 2003. 204.

    and its Applications(高光谱遥感及其应用). Beijing: Higher Education Press(北京:

    PU Rui-liang, GONG Peng(浦瑞良, 宫鹏). Hyperspectral Remote Sensing

[18] Jersey: John Wiley & Sons,Inc. Hoboken, 2004. 93.

    LIANG Shun-lin. Quantitative Remote Sensing of Land Surfaces. New

[19] Knipling E B. Remote Sensing of Environment,1970, 1: 155.

[20] Curran P J, Windham W R, Gholz H L. Tree Physiology, 1995, 15: 203.

刘占宇, 石晶晶, 王大成, 黄敬峰. 稻干尖线虫病胁迫水稻叶片波谱响应特征及识别研究[J]. 光谱学与光谱分析, 2010, 30(3): 710. LIU Zhan-yu, SHI Jing-jing, WANG Da-cheng, HUANG Jing-feng. Discrimination and Spectral Response Characteristic of Stress Leaves[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 710.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!