光学学报, 2020, 40 (6): 0631001, 网络出版: 2020-03-06   

高质量单晶金刚石的合成、结构与光学性能研究 下载: 1868次

Synthesis, Structure, and Optical Properties of a High-Quality Single-Crystal Diamond
作者单位
北京科技大学新材料技术研究院, 北京 100083
引用该论文

屠菊萍, 刘金龙, 邵思武, 朱肖华, 赵云, 陈良贤, 魏俊俊, 李成明. 高质量单晶金刚石的合成、结构与光学性能研究[J]. 光学学报, 2020, 40(6): 0631001.

Juping Tu, Jinlong Liu, Siwu Shao, Xiaohua Zhu, Yun Zhao, Liangxian Chen, Junjun Wei, Chengming Li. Synthesis, Structure, and Optical Properties of a High-Quality Single-Crystal Diamond[J]. Acta Optica Sinica, 2020, 40(6): 0631001.

参考文献

[1] 梁中翥, 梁静秋, 郑娜, 等. 掺氮金刚石的光学吸收与氮杂质含量的分析研究[J]. 物理学报, 2009, 58(11): 8039-8043.

    Liang Z Z, Liang J Q, Zheng N, et al. Optical absorbance of diamond doped with nitrogen and the nitrogen concentration analysis[J]. Acta Physica Sinica, 2009, 58(11): 8039-8043.

[2] 吕反修, 唐伟忠, 李成明, 等. 大面积光学级金刚石自支撑膜制备、加工及应用[J]. 功能材料, 2004, 35(增刊): 117-124.

    Lü F X, Tang W Z, Li C M, et al. Preparation, fabrication and application of large area optical grade free standing diamond films[J]. Journal of Functional Materials, 2004, 35(Suppl): 117-124.

[3] Abdel-Rahman M A E, Lohstroh A, Bryant P. Alpha spectroscopy and X-ray induced photocurrent studies of a SC CVD diamond detector fabricated with PLD contacts[J]. Radiation Physics and Chemistry, 2019, 164: 108357.

[4] Trischuk W. Diamond particle detectors for high energy physics[J]. Nuclear and Particle PhysicsProceedings, 2016, 273/274/275: 1023- 1028.

[5] 侯立飞, 杜华冰, 车兴森, 等. 新型CVD金刚石X射线探测器时间性能初步研究[J]. 光学学报, 2018, 38(7): 0704001.

    Hou L F, Du H B, Che X S, et al. Preliminary study of temporal performances of a novel CVD diamond X-ray detector[J]. Acta Optica Sinica, 2018, 38(7): 0704001.

[6] 周海洋, 朱晓东, 詹如娟. CVD金刚石辐射探测器研制及性能测[J]. 物理学报, 2010, 59(3): 1620-1623.

    Zhou H Y, Zhu X D, Zhan R J. Fabrication and performance of CVD diamond radiation detector[J]. Acta Physica Sinica, 2010, 59(3): 1620-1623.

[7] 唐伟忠, 于盛旺, 李成明, 等. 金刚石膜红外光学窗口的化学气相沉积技术[J]. 红外与激光工程, 2010, 39(增刊): 348-352.

    Tang W Z, Yu S W, Li C M, et al. Development in technology to produce diamond infrared windows[J]. Infrared and Laser Engineering, 2010, 39(Suppl): 348-352.

[8] 于盛旺, 刘艳青, 唐伟忠, 等. 高功率MPCVD金刚石膜透波窗口材料制备研究[J]. 人工晶体学报, 2012, 41(4): 896-899.

    Yu S W, Liu Y Q, Tang W Z, et al. Synthesis of diamond film as electromagnetic window material by an ellipsoidal MPCVD reactor at high input microwave power levels[J]. Journal of Synthetic Crystals, 2012, 41(4): 896-899.

[9] Bogdanowicz R, Sobaszek M, Sawczak M, et al. Enhanced boron doping of thin diamond films grown in deuterium-rich microwave plasma[J]. Diamond and Related Materials, 2019, 96: 198-206.

[10] Liang Z Z, Jia X, Zhu P W, et al. Effects of the additive NaN3 added in powder catalysts on the morphology and inclusions of diamonds synthesized under HPHT[J]. Diamond and Related Materials, 2006, 15(1): 10-14.

[11] Eckert V, Leonhardt A, Hampel S, et al. Morphology of MWCNT in dependence on N-doping, synthesized using a sublimation-based CVD method at 750 ℃[J]. Diamond and Related Materials, 2018, 86: 8-14.

[12] Liu J L, Lin L Z, Zhao Y, et al. Homo-epitaxial growth of single crystal diamond in the purified environment by active O atoms[J]. Vacuum, 2018, 155: 391-397.

[13] Zheng Y T, Liu J L, Wei J J, et al. Ultra-smooth and hydrophobic nitrogen-incorporated ultranano-crystalline diamond film growth in C-H-O-N gas phase system via microwave plasma CVD[J]. Surface and Coatings Technology, 2019, 374: 409-417.

[14] 郭世斌. 微量杂质对金刚石膜物理性能的影响研究[D]. 北京: 北京科技大学, 2009: 49.

    Guo SB. Study of the effect of minute impurities on physical properties of diamond films[D]. Beijing: University of Science and Technology Beijing, 2009: 49.

[15] 黑立富. 气体循环直流旋转电弧等离子体喷射法生长金刚石大单晶研究[D]. 北京: 北京科技大学, 2015: 109.

    Hei LF. Synthesis of large homoepitaxial single crystal diamond by DC arc plasma jet CVD with rotating arc and operated at gas recycling mode[D]. Beijing: University of Science and Technology Beijing, 2015: 109.

[16] Hoinkis M, Weber E R, Landstrass M I, et al. Paramagnetic nitrogen in chemical vapor deposition diamond thin films[J]. Applied Physics Letters, 1991, 59(15): 1870-1871.

[17] Nistor S V, Stefan M, Ralchenko V, et al. Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates[J]. Journal of Applied Physics, 2000, 87(12): 8741-8746.

[18] 叶永权, 匡同春, 雷淑梅, 等. 膜)的拉曼光谱表征技术进展[J]. 金刚石与磨料磨具工程, 2007, 161(5): 17-21.

    Ye Y Q, Kuang T C, Lei S M, et al. Technique progress in Raman spectroscopy characterization of diamond or diamond film[J]. Diamond & Abrasives Engineering, 2007, 161(5): 17-21.

[19] Liu J L, Zheng Y T, Lin L Z, et al. Surface conductivity enhancement of H-terminated diamond based on the purified epitaxial diamond layer[J]. Journal of Materials Science, 2018, 53(18): 13030-13041.

[20] Hei LF, Lu FX, Li CM, et al., 2012, 490/491/492/493/494/495: 3059- 3064.

[21] Huang SM, SunZ, Lu YF, et al. and CoatingsTechnology, 2002, 151/152: 263- 267.

[22] Wolter S, Prater J, Sitar Z. Raman spectroscopic characterization of diamond films grown in a low-pressure flat flame[J]. Journal of Crystal Growth, 2001, 226(1): 88-94.

[23] Berthou H, Faure C, Hänni W, et al. Morphology and Raman spectra of diamond films grown with a plasma torch[J]. Diamond and Related Materials, 1999, 8(2/3/4/5): 636-639.

[24] Su Y, Li H D, Cheng S H, et al. Effect of N2O on high-rate homoepitaxial growth of CVD single crystal diamonds[J]. Journal of Crystal Growth, 2012, 351(1): 51-55.

[25] Sumiya H, Toda N. Nishibayashi Y, etal. Crystalline perfection of high purity synthetic diamond crystal[J]. Journal of Crystal Growth, 1997, 178(4): 485-494.

[26] 金国君, 徐恺, 檀珺, 等. 具有超低反射率的折射率渐变封装结构[J]. 光学学报, 2019, 39(2): 0231001.

    Jin G J, Xu K, Tan J, et al. Encapsulation structure of gradient refractive index with ultralow reflectance[J]. Acta Optica Sinica, 2019, 39(2): 0231001.

[27] 刘剑红, 陈美华, 吴改, 等. 金刚石的晶体质量评定探究[J]. 人工晶体学报, 2014, 43(3): 559-564.

    Liu J H, Chen M H, Wu G, et al. Study on the evaluation of the crystal quality of diamonds[J]. Journal of Synthetic Crystals, 2014, 43(3): 559-564.

[28] 郭彦召. CVD金刚石辐照探测器的制备与性能研究[D]. 北京: 北京科技大学, 2018: 16- 17.

    Guo YZ. Study on fabrication and performance of radiation detector basic on CVD diamond[D]. Beijing: University of Science and Technology Beijing, 2018: 16- 17.

[29] Chand N. GaAs avalanche photodiodes and the effect of rapid thermal annealing on crystalline quality of GaAs grown on Si by molecular-beam epitaxy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1987, 5(3): 822-826.

[30] Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis[J]. Applied Physics Letters, 1996, 69(21): 3173-3175.

[31] Kurtz A D, Kulin S A, Averbach B L. Effect of dislocations on the minority carrier lifetime in semiconductors[J]. Physical Review, 1956, 101(4): 1285-1291.

[32] Tran Thi T N, Morse J, Caliste D, et al. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications[J]. Journal of Applied Crystallography, 2017, 50(2): 561-569.

[33] Zhu R H, Miao J Y, Liu J L, et al. High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD[J]. Diamond and Related Materials, 2014, 50: 55-59.

[34] Yin Z, Akkerman Z, Yang B X, et al. Optical properties and microstructure of CVD diamond films[J]. Diamond and Related Materials, 1997, 6(1): 153-158.

[35] 严雪俊, 严俊, 方飚, 等. 钻石的紫外-可见-近红外光谱与光致发光光谱温敏特性及其鉴定指示意义[J]. 光学学报, 2019, 39(9): 0930005.

    Yan X J. Fang B, et al. Temperature sensitivity of UV-visible-near infrared and photoluminescence spectra of diamond and its significance for identification[J]. Acta Optica Sinica, 2019, 39(9): 0930005.

屠菊萍, 刘金龙, 邵思武, 朱肖华, 赵云, 陈良贤, 魏俊俊, 李成明. 高质量单晶金刚石的合成、结构与光学性能研究[J]. 光学学报, 2020, 40(6): 0631001. Juping Tu, Jinlong Liu, Siwu Shao, Xiaohua Zhu, Yun Zhao, Liangxian Chen, Junjun Wei, Chengming Li. Synthesis, Structure, and Optical Properties of a High-Quality Single-Crystal Diamond[J]. Acta Optica Sinica, 2020, 40(6): 0631001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!