半导体光电, 2020, 41 (4): 494, 网络出版: 2020-08-18  

菲涅耳透镜下多结电池表面局部高辐射功率对短路电流的影响

Influence of Local High Radiation on Shortcircuit Current of Multijunction Solar Cell under Fresnel Lens
作者单位
中山大学 太阳能系统研究所 广东省光伏技术重点实验室, 广州 510006
摘要
为探索以菲涅耳透镜为聚光器的聚光光伏模组中,多结电池中心局部高辐射功率对短路电流的影响,测量菲涅耳透镜的高亮度光斑直径,并据此分别测试室内不同局部光照面积下和户外不同尺寸透镜下的GaInP/GaInAs/Ge三结电池的短路电流,利用电路网络模型分析实验结果。结果表明,短路电流与局部聚光的面积无关;小尺寸菲涅耳透镜聚焦下,沿光轴电流与辐射功率同步变化;透镜尺寸增大到一定程度,电池中心局部承受过高辐射功率,电流受峰值隧穿电流限制,宏观体现为焦平面处短路电流下降。电池放置在焦平面两侧,均可缓解局部高辐射功率,短路电流最高提升 8.0%。
Abstract
In order to explore the influence of local high radiation on short-circuit current of multijunction solar cell in concentrated photovoltaic module with Fresnel lens as the concentrator, the diameters of the high bright spot of Fresnel lens were measured so as to measure the shortcircuit current of the GaInP/GaInAs/Ge triplejunction solar cell with different sizes of lens under different local illumination areas. And the experimental results were analyzed by using circuit network model. The results show that the shortcircuit current is independent of the area of bright spot, and the current along the optical axis changes synchronously with radiation when the small size Fresnel lens is focused. When the size of lens increases to a certain extent, high radiation presents inthe center of solar cell, and the current is limited by peak tunneling current, which is reflected as the decrease of shortcircuit current at the focal plane. Putting the solar cell on both sides of the focal plane canalleviatethe local high radiation, and the shortcircuit current can be increased by 8.0%.
参考文献

[1] Luque A L, Viacheslav A. Concentrator Photovoltaics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 7.

[2] Zhu L, Boehm R F, Wang Y, et al. Water immersion cooling of PV cells in a high concentration system[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 538545.

[3] Guiqiang L, Qingdong X. Effect of nonuniform illumination and temperature distribution on concentrating solar cellA review[J]. Energy, 2018, 144: 11101136.

[4] Yaling H, Kun W, Yu Q, et al. Review of the solar flux distribution in concentrated solar power: Nonuniform features, challenges, and solutions[J]. Appl. Thermal Engin., 2019, 149: 448474.

[5] Garcia I, ReyStolle I, Galiana B, et al. A 32.6% efficient latticematched dualjunction solar cell working at 1000 suns[J]. Appl. Phys. Lett., 2009, 94(3): 053509.1053509.3.

[6] Bunthof L A A, Haverkamp E J, Van d W D, et al. Influence of laterally split spectral illumination on multijunction CPV solar cell performance[J]. Solar Energy, 2018, 170: 8694.

[7] Herrero R, Victoria M, Dominguez C, et al. Concentration photovoltaic optical system irradiance distribution measurements and its effect on multijunction solar cells[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(4): 423430.

[8] 宋明辉. 聚光多结太阳能电池的设计、制备及可靠性研究[D]. 武汉: 华中科技大学, 2012.

    Song Minghui. Design, fabrication and reliability study of concentrator multijunction solar cells[D]. Wuhan: Huazhong University of Science and Technology, 2012.

[9] Paquette B, Devita M, Turala A, et al. Optimization of pdoping in AlGaAs grown by CBE using TMA for AlGaAs/GaAs tunnel junctions[J]. J. of Crystal Growth, 2013, 374(374): 14.

[10] Dimroth F, Beckert R, Meusel M, et al. Metamorphic GayIn1-yP/Ga1-xInxAs tandem solar cells for space and for terrestrial concentrator applications at C>1000 suns[J]. Progress in Photovoltaics Research and Applications, 2001, 9(3): 165178.

[11] 蔡建九, 单智发, 张 永, 等. 高倍聚光GalnP/InGaAs/Ge三结太阳电池研究[J]. 半导体技术, 2013, 38(4): 241247.

    Cai Jianjiu, Shan Zhifa, Zhang Yong, et al. Research of GaInP/InGaAs/Ge triple junction solar cells for high concentrating photovoltaics[J]. Semiconductor Technology, 2013, 38(4): 241247.

[12] Guter W, Bett A W. IVcharacterization of devices consisting of solar cells and tunnel diodes[C]// Proc. of Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, 2006: 749752.

[13] Espinet P, Garcia I, ReyStolle I, et al. Extended description of tunnel junctions for distributed modeling of concentrator multijunction solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 26932697.

[14] Steiner M, Guter W. A validated spice network simulation study on improving tunnel diodes by introducing lateral conduction layers[J]. Progress in Photovoltaics Research and Applications, 2012, 20(3): 274283.

[15] Galiana B, Algora C, ReyStolle I, et al. A 3d model for concentrator solar cells based on distributed circuit units[J]. IEEE Trans. on Electron Devices, 2005, 52(12): 25522558.

[16] Chander S, Purohit A, Nehra A, et al. A study on spectral response and external quantum efficiency of monocrystalline silicon solar cell[J]. Inter. J. of Renewable Energy Research, 2014, 5(1): 4144.

[17] Bett A W, Baur C, Dimroth F, et al. FLATCON/spl trade/modules: technology and characterisation[C]// Proc. World Conf. on Photovoltaic Energy Conversion. IEEE, 2003, 1: 634637.

[18] 陈 帅, 杨瑞霞, 吴亚美. ⅢⅤ多结太阳电池隧道结模型的研究进展[J]. 微纳电子技术, 2015, 52(9): 614.

    Chen Shuai, Yang Ruixia, Wu Yamei. Research process of tunnel junction models in ⅢⅤmultijunction solar cells[J]. Micronanoelectronic Technology, 2015, 52(9): 614.

[19] Steiner M, Guter W, Peharz G, et al. A validated SPICE network simulation study on improving tunnel diodes by introducing lateral conduction layers[J]. Progress in Photovol. Research and Appl., 2012, 20(3): 274283.

江景祥, 舒碧芬, 梁齐兵, 黄妍, 崔高峻, 喻祖康. 菲涅耳透镜下多结电池表面局部高辐射功率对短路电流的影响[J]. 半导体光电, 2020, 41(4): 494. JIANG Jingxiang, SHU Bifen, LIANG Qibing, HUANG Yan, CUI Gaojun, YU Zukang. Influence of Local High Radiation on Shortcircuit Current of Multijunction Solar Cell under Fresnel Lens[J]. Semiconductor Optoelectronics, 2020, 41(4): 494.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!