光学学报, 2016, 36 (12): 1227002, 网络出版: 2020-05-09   

曲面目标量子雷达散射截面分析

Analysis of Quantum Radar Cross Section of Curved Surface Target
作者单位
空军工程大学信息与导航学院, 陕西 西安 710077
摘要
为研究曲面目标的量子雷达散射截面(QRCS)特性,以圆柱曲面为数学模型,并根据光子与镜面物质相互作用的量子描述,分别引入单光子和双光子的概率波函数.基于经典雷达散射截面(CRCS)定义式,分别推导了单光子和双光子的 QRCS解析式,并对多光子的 QRCS定义进行了扩展和推导.对 QRCS和 CRCS截然不同的物理本质及其相互关系进行了分析.仿真结果表明,双光子 QRCS在不同入射角度下形成的波形在毫米波段出现畸变,因此单光子 QRCS具有更好的性能;与 CRCS相比,QRCS的主旁瓣比更高。
Abstract
To study the property of quantum radar cross section (QRCS) of curved surface target, the probability wave functions of single-photon and two-photon are introduced according to the quantum description of interaction between photon and mirror matter, and the cylinder surface is used as the simulation model. The QRCS analytical expressions of single-photon and two-photon are deduced on the basis of the definition of classical radar cross section (CRCS), and the QRCS definition of multiple photons is extended and derived. The different physical natures and mutual relationships between QRCS and CRCS are also analyzed. Simulation results show that the two-photon QRCS is aberrant in millimeter wave band under different incident angles, and the single-photon QRCS has better performance. Compared with CRCS, QRCS has higher main-to-sidelobe ratio.
参考文献

[1] 鲁天安, 李洪平. 敭机载合成孔径激光雷达相位误差补偿研究[J]. 光学学报, 2015, 35(8): 0801002.

    Lu Tian′an, Li Hongping. Phase error compensation in airborne synthetic aperture lidar data processing[J]. Acta Optica Sinica, 2015, 35(8): 0801002.

[2] Smith III J F. Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement[C]. SPIE, 2009, 7342: 73420A.

[3] Jiang K, Lee H, Gerry C C, et al. Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit[J]. Journal of Applied Physics, 2013, 114(19): 193102.

[4] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification[J]. Journal of the Optical Society of America B, 2010, 27(6): A63-A72.

[5] Wasilousky P A, Smith K H, Glasser R, et al. Quantum enhancement of a coherent LADAR receiver using phase-sensitive amplification[C]. SPIE, 2011, 8163: 816305.

[6] Santivanez C A, Guha S, Dutton Z, et al. Quantum enhanced lidar resolution with multi-spatial-mode phase sensitive amplification[C]. SPIE, 2011, 8163: 81630Z.

[7] Lanzagorta M. Quantum radar[M]. San Rafael: Morgan & Claypool, 2011: 77-90.

[8] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination[J]. Science, 2008, 321(5895): 1463-1465.

[9] Shapiro J H, Lloyd S. Quantum illumination versus coherent-state target detection[J]. New Journal of Physics, 2009, 11(6): 063045.

[10] Tan S H, Erkmen B I, Giovannetti V, et al. Quantum illumination with Gaussian states[J]. Physical Review Letters, 2008, 101(25): 253601.

[11] Guha S, Erkmen B I. Gaussian-state quantum-illumination receivers for target detection[J]. Physical Review A, 2009, 80(5): 052310.

[12] Lanzagorta M. Quantum radar cross section[C]. SPIE, 2010, 7727: 77270K.

[13] Liu K, Xiao H T, Fan H Q. Analysis and simulation of quantum radar cross section[J]. Chinese Physics Letters, 2014, 31(3): 034202.

[14] Liu K, Xiao H T, Fan H Q, et al. Analysis of quantum radar cross section and its influence on target detection performance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1146-1149.

[15] 徐世龙, 胡以华, 赵楠翔, 等. 金属目标原子晶格结构对其量子雷达散射截面的影响[J]. 物理学报, 2015, 64(15): 154203.

    Xu Shilong, Hu Yihua, Zhao Nanxiang, et al. Impact of metal target′s atom lattice structure on its quantum radar cross-section[J]. Acta Physica Sinica, 2015, 64(15): 154203.

[16] 朱艳菊, 江月松, 张崇辉, 等. 应用改进的物理光学法和图形计算电磁学近似算法快速计算导体目标电磁散射特性[J]. 物理学报, 2014, 63(16): 164202.

    Zhu Yanju, Jiang Yuesong, Zhang Chonghui, et al. Fast computation of electromagnetic scattering characteristics from conducting targets using modified-physical optics and graphical electromagnetic computing[J]. Acta Physica Sinica, 2014, 63(16): 164202.

[17] Muthukrishnan A, Scully M O, Zubairy M S. The photon wave function[C]. SPIE, 2005, 5866: 287-292.

陈坤, 陈树新, 吴德伟, 王希, 史密. 曲面目标量子雷达散射截面分析[J]. 光学学报, 2016, 36(12): 1227002. Chen Kun, Chen Shuxin, Wu Dewei, Wang Xi, Shi Mi. Analysis of Quantum Radar Cross Section of Curved Surface Target[J]. Acta Optica Sinica, 2016, 36(12): 1227002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!