半导体光子学与技术, 2009, 15 (3): 139, 网络出版: 2011-08-19  

Characterization and Stability of Na-doped p-type ZnO Thin Films Preparation by Reactive DC Magnetron Sputtering

Characterization and Stability of Na-doped p-type ZnO Thin Films Preparation by Reactive DC Magnetron Sputtering
作者单位
1 Institute of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, CHN
2 State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, CHN
摘要
Abstract
Na-doped p-type ZnO thin films have been realized by DC reactive magnetron sputtering with a set of metal-Zn targets doped with various Na contents and under different substrate temperatures, respectively. Hall effect measurement, field-emission SEM, X-ray diffraction and optical transmission were carried out to investigate the effects of Na content and substrate temperature on the properties of p-type films. Results indicate that all the Na-doped ZnO films are strongly (002) oriented, and have an average transmittance ~85% in the visible region. Na-doped p-type ZnO films with good structural, electrical, and optical properties can only be obtained at an intermediate amount of Na content and under appropriate substrate temperature. At the optimal condition, the Na-doped p-type ZnO has the lowest resistivity of 13.8Ω·cm with the carrier concentration as high as 1.07×1018cm-3. The stability of the Na-doped p-type ZnO is also studied in this paper and it is found that the electrical properties keep stable in a period of one month.
参考文献

[1] Look D C. Recent advances in ZnO materials and devices[J].Mater. Sci. Eng. B, 2001, 80(1-3): 383-387.

[2] zgür , Alivov Ya I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J.Appl.Phys, 2005, 98: 041301.

[3] WANG Bin, ZHAO Yue, MIN Jia-hua, et al. Ag-N dual-accept doping for the fabrication of p-type ZnO[J]. Appl. Phys.A, 2009, 94: 715-718.

[4] KONG Jie-ying, CHU Sheng, Olmedo M, et al. Dominant ultraviolet light emissionsin packed ZnO columnar homojunction diodes[J]. Appl.Phys.Lett, 2008, 93: 132113.

[5] Ryu Y R, Kim W J, White H W, et al. Fabrication of homostructural ZnO p-n junctions[J]. J.Crystal Growth, 2000, 219: 419-422.

[6] Pearton S J, Norton D P, Tien L C, et al. Modeling and fabrication of ZnO nanowire transistors [J]. IEEE Transaction on electron devices, 2008, 55(11): 3012-3019.

[7] Walukiewicz W. Defect formation and diffusion in heavily doped semiconductors[J]. Phys.Rev.B, 1994, 50(8): 5221-5225.

[8] Garcia A, Northrup J E. Compensation of p-type doping in ZnSe: the role of impurity-native defect complexes[J]. Phys.Rev.Lett, 1995, 74(7): 1131-1134.

[9] Laks D B, Van de Walle C G, Neumark G F, et al. Role of native defects in wide-band-gap semiconductors[J]. Phys. Rev.Lett, 1991, 66(5): 648-651.

[10] Van de Walle C G, Laks D B, Neumark G F, et al. First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe[J]. Phys.Rew.B, 1993, 47(15): 9425-9434.

[11] Yamamoto T, Yoshida H K. Unipolarity of ZnO with a wide-band gap and its solution using codoping method[J]. J. Crystal Growth, 2000, 214/215: 552-555.

[12] Li Y F, Yao B, Lu Y M, et al. Biaxial stress-dependent optical band gap, crystalline, and electronic structure in wurtzite ZnO: Experimental and ad initio study[J]. J.Appl.Phys., 2008, 104(8): 083516.

[13] Dai L P, Deng H, Zang J D, et al. The effect of annealing temperature on the properties of ZnO films with preferential nonpolar plane orientation by SSCVD[J]. J.Mater Sci, 2008, 43(1): 312-315.

[14] Abdul H H, Abdullah M J, Aziz A A. Structural and electrical properties of p-type ZnO thin films[J]. Current issues of physics in Malasia, AIP conference proceedings, 2008, 1017: 134-138.

[15] Lin S S, Ye Z Z, Lu J G, et al. Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate[J]. J.Phys.D: Appl.Phys., 2008, 41(15): 155114.

[16] Li J B, Wei S H, Li S S, et al. Design of shallow acceptors in ZnO: first-principles band-structure calculations[J]. Phys.Rev.B, 2006, 74(8): 081201(R).

[17] Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: the impurity perspective[J]. Phys.Rev. B, 2002, 66(7): 073202.

[18] Lee E C, Chang K J. Possible p-type doping with group-I elements in ZnO[J]. Phys.Rev.B, 2004, 70(11):115210.

[19] Wardle M G, Goss J P, Briddon P R, et al. Theory of Li in ZnO: a limitation for Li-based p-type doping[J]. Phys. Rev.B, 2005, 71(15): 155205.

[20] ZENG Yu-jia, YE Zhi-zhen, XU Wei-zhong, et al. Realization of p-type ZnO films via monodoping of Li acceptor [J]. J.Crystal Growth, 2005, 283(1-2): 180-184.

JI Zhen-guo, LIU Fang, HE Hai-yan, HAN Wei-zhi. Characterization and Stability of Na-doped p-type ZnO Thin Films Preparation by Reactive DC Magnetron Sputtering[J]. 半导体光子学与技术, 2009, 15(3): 139. JI Zhen-guo, LIU Fang, HE Hai-yan, HAN Wei-zhi. Characterization and Stability of Na-doped p-type ZnO Thin Films Preparation by Reactive DC Magnetron Sputtering[J]. Semiconductor Photonics and Technology, 2009, 15(3): 139.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!