激光与光电子学进展, 2018, 55 (1): 012401, 网络出版: 2018-09-10   

基于石墨烯的表面等离激元带阻滤波器 下载: 1392次

Surface Plasmonic Polariton Band-Stop Filters Based on Graphene
作者单位
1 厦门工学院电子信息与电气工程学院, 福建 厦门 361021
2 华侨大学信息科学与工程学院, 福建 厦门 361021
引用该论文

赵静, 王加贤, 邱伟彬, 邱平平, 任骏波, 林志立. 基于石墨烯的表面等离激元带阻滤波器[J]. 激光与光电子学进展, 2018, 55(1): 012401.

Zhao Jing, Wang Jiaxian, Qiu Weibin, Qiu Pingping, Ren Junbo, Lin Zhili. Surface Plasmonic Polariton Band-Stop Filters Based on Graphene[J]. Laser & Optoelectronics Progress, 2018, 55(1): 012401.

参考文献

[1] Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics, 2010, 4(8): 495-497.

[2] Macdonald J R, Beecher S J, Berry P A, et al. Compact mid-infrared Cr∶ZnSe channel waveguide laser[J]. Applied Physics Letters, 2013, 102(16): 161110.

[3] 李志永, 谭荣清, 黄伟, 等. 傅里叶变换红外光谱技术测量甲烷气压的实验研究[J]. 中国激光, 2017, 44(3): 0301006.

    Li Z Y, Tan R Q, Huang W, et al. Methane pressure detection based on Fourier transform infrared spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(3): 0301006.

[4] Stanley R. Plasmonics in the mid-infrared[J]. Nature Photonics, 2012, 6(7): 409-411.

[5] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 2(8): 1086-1101.

[6] Brar V W, Jang M S, Sherrott M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547.

[7] 朱晟昦, 谭策, 王琰, 等. 基于SPR效应和缺陷耦合的光子晶体光纤高灵敏度磁场与温度传感器[J]. 中国激光, 2017, 44(3): 0310001.

    Zhu C H, Tan C, Wang Y, et al. Research on high sensitivity temperature and magnetic field sensor based on surface plasmon resonance and mode coupling in photonic crystal fibers[J]. Chinese Journal of Lasers, 2017, 44(3): 0310001.

[8] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85.

[9] Chen J, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81.

[10] Koppens F H, Chang D E. Garciade Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8): 3370-3377.

[11] Chu H, How Gan C. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays[J]. Applied Physics Letters, 2013, 102(23): 231107.

[12] Yang L, Pei C, Shen A, et al. An all-optical modulation method in sub-micron scale[J]. Scientific Reports, 2015, 5: 9206-9206.

[13] 刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

    Liu Y Z, Zhang Y P, Cao Y Y, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.

[14] Gao Y, Ren G, Zhu B, et al. Tunable plasmonic filter based on graphene split-ring[J]. Plasmonics, 2016, 11(1): 291-296.

[15] Wei Z, Li X, Yin J, et al. Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths[J]. Optics Express, 2016, 24(13): 14344-14351.

[16] Shi B, Cai W, Zhang X, et al. Tunable band-stop filters for graphene plasmons based on periodically modulated graphene[J]. Scientific Reports, 2016, 6: 26796-26796.

[17] Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634.

[18] Nikitin A Y, Guinea F. Garcia-Vidal F J, et al. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons[J]. Physical Review B, 2012, 85(8): 081405.

[19] Zhao J, Liu X, Qiu W, et al. Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity[J]. Optics Express, 2014, 22(5): 5754-5761.

[20] Qiu W, Liu X, Zhao J, et al. Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer[J]. Applied Physics Letters, 2014, 104(4): 041109.

[21] Wang B, Zhang X, Yuan X, et al. Optical coupling of surface plasmons between graphene sheets[J]. Applied Physics Letters, 2012, 100(13): 131111.

[22] 邱平平, 邱伟彬, 林志立, 等. 复式晶格二维石墨烯等离子激元晶体的能带结构与态密度[J]. 激光与光电子学进展, 2017, 54(5): 052401.

    Qiu P P, Qiu W B, Lin Z L, et al. Energy-band structure and density of states of composite lattice two-dimensional graphene plasmon polariton crystals[J]. Laser & Optoelectronics Progress, 2017, 54(5): 052401.

[23] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

[24] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 2007, 19(2): 026222.

[25] Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009, 80(24): 245435.

[26] Choi S, Jhi S, Son Y. Controlling energy gap of bilayer graphene by strain[J]. Nano Letters, 2010, 10(9): 3486-3489.

[27] Liu J, Wright A R, Zhang C, et al. Strong terahertz conductance of graphene nanoribbons under a magnetic field[J]. Applied Physics Letters, 2008, 93(4): 041106.

[28] Zhang Y, Tang T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459(7248): 820-823.

[29] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Physical Review Letters, 2010, 105(25): 256805.

[30] Yan X, Wang T, Han X, et al. High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators[J]. Plasmonics, 2016, 12(5): 1449-1455.

赵静, 王加贤, 邱伟彬, 邱平平, 任骏波, 林志立. 基于石墨烯的表面等离激元带阻滤波器[J]. 激光与光电子学进展, 2018, 55(1): 012401. Zhao Jing, Wang Jiaxian, Qiu Weibin, Qiu Pingping, Ren Junbo, Lin Zhili. Surface Plasmonic Polariton Band-Stop Filters Based on Graphene[J]. Laser & Optoelectronics Progress, 2018, 55(1): 012401.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!