Photonic Sensors, 2016, 6 (4): 333, Published Online: Oct. 21, 2016   

Spectra Power and Bandwidth of Fiber Bragg Grating Under Influence of Gradient Strain

Author Affiliations
Key Laboratory on Photoelectric Oil-Gas Logging and Detecting (Ministry of Education), Xi’an Shiyou University, Xi’an, 710065, China
Abstract
The reflective spectrum power and the bandwidth of the fiber Bragg grating (FBG) under gradient strain are researched and experimentally demonstrated. The gradient strain is applied on the FBG, which can induce FBG bandwidth broadening, resulting in the variation of reflective power. Based on the coupled-mode theory and transfer matrix method, the segmental linear relationship between the gradient strain, the reflective power, and the bandwidth is simulated and analyzed, and the influence of the FBG length on the reflective spectrum is analyzed. In the experiment, the strict gradient stain device is designed; the experimental results indicate that the reflective optic power and the bandwidth of the FBG under gradient stain are concerned with the length of the FBG. Experimental results are well consistent with the theoretical analysis, which have important guiding significance in the FBG dynamic sensing.
References

[1] T. Li, Y. Tan, Z. Zhou, L. Cai, S. Liu, Z. He, et al., “Study on the non-contact FBG vibration sensor and its application,” Photonic Sensors, 2015, 5(2): 128-136.

[2] L. Li, D. Zhang, H. Liu, Y. Guo, and F. Zhu, “Design of an enhanced sensitivity FBG strain sensor and application in highway bridge engineering,” Photonic Sensors, 2014, 4(2): 162-167.

[3] J. Wang, T. Liu, G. Song, H. Xie, L. Li, X. Deng, et al., “Fiber Bragg grating (FBG) sensors used in coal mines,” Photonic Sensors, 2014, 4(2): 120-124.

[4] S. Li and M. Zhou, “Long-term mechanical properties of smart cable based on FBG desensitized encapsulation sensors,” Photonic Sensors, 2014, 4(3): 236-241.

[5] X. Zhu, “Aluminum alloy material structure impact localization by using FBG sensors,” Photonic Sensors, 2014, 4(4): 344-348.

[6] Y. G. Han, X. Y. Dong, J. H. Lee, and S. B. Lee, “Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam,” Optics Letter, 2006, 31(19): 2839-2841.

[7] T. Guo, B. Liu, and X. Y. Dong, “Linear and Gaussian chirped fiber Bragg grating and its applications in fiber-optic filtering and sensing systems,” IEEE Photonics Technology Letters, 2007, 19(14): 663-665.

[8] B. Q. Jiang, J. L. Zhao, C. Qin, and F. Fan, “A bandwidth-tuning device based on polymer-packaged fiber Bragg grating,” IEEE Photonics Technology Letters, 2011, 23(17): 1225-1227.

[9] X. G. Qiao, Y. P. Wang, H. Z. Yang, G. Tuan, Q. Z. Rong, L. Ling, et al., “Ultrahigh-temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technology Letters, 2015, 27(12): 1305-1308.

[10] M. Abtahi, A. D. Simard, S. Doucet, L. Sophie, and L. A. Rusch, “Characterization of a linearly chirped FBG under local temperature variations for spectral shaping applications,” Journal of Lightwave Technology, 2011, 23(5): 750-755.

[11] J. L. Cruz, L. Dong, S. Barcelos, and L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Applied Optics, 1996, 35(34): 6781-6787.

[12] L. Dong, J. L. Cruz, L. Reekie, and J. A. Tocknott, “Chirped fiber Bragg gratings fabricated using etched tapers,” Optical Fiber Technology, 1995, 1(4): 363-368.

[13] Y. N. Zhu, P. Shu. C. Lu, M. B. Lacquet, P. L. Swart, A. A. Chtcherbakov, et al., “Temperature insensitive measurements of static displacements using a fiber Bragg grating,” Optics Express, 2003, 11(16): 1918-1924.

[14] B. Yin, Y. L. Bai, and Y. H. Qi, “Study on tapered chirped fiber grating filter,” Acta Physica Sinica, 2013, 62(21): 214213-214213.

[15] H. Z. Yang, K. S. Lim, X. G. Qiao, W. Y. Chong, Y. K. Cheong, W. H. Lim, et al., “Reflection spectra of etched FBGs under the influence of axial contraction and stress-induced index change,” Optics Express, 2013, 21(12): 14808-14815.

[16] G. Tuan , B, Liu, W. G. Zhang, G. Y. Kai, Q. D. Zhao, and X. Y. Dong, “Research on optical fiber grating chirp-sensing technology,” Acta Physica Sinica, 2008, 28(5): 828-834.

[17] J. J. Wei, Y. P. Liang, and T. L. Dai. “Numerical analysis of reflection spectrum of linearly chirped fiber Bragg gratings,” Laser Technology, 2012, 36(5): 607-611.

Qinpeng LIU, Xueguang QIAO, Zhen’an JIA, Haiwei FU. Spectra Power and Bandwidth of Fiber Bragg Grating Under Influence of Gradient Strain[J]. Photonic Sensors, 2016, 6(4): 333.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!