红外与毫米波学报, 2019, 38 (4): 04535, 网络出版: 2019-10-14   

一种少光子高精度多波束激光雷达系统及验证

A high accuracy multi-beam Lidar system and its verification on several photons
作者单位
1 中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 脉冲功率激光技术国家重点实验室,安徽 合肥 230037
摘要
介绍了一种基于8×8面阵SiPM(Silicon photomultiplier)的少光子高精度多波束三维成像激光雷达系统,并给出了激光测距的理论计算以及系统设计.从64波束线阵激光并行发射出发,采用线阵转面阵光纤的排布技术实现激光发射与探测器接收配准.设计了离轴三反的光学收发系统、超窄带滤波结构以及64通道高速并行读出电路,并搭建了激光雷达样机.实验结果表示,静态21 m测距下,64通道一致性较好,测距精度均达到1 cm,最大距离偏差为6 cm;三维成像中,分辨率达到512×512,成像时间100 ms,能够分辨15 cm不同目标,平面点云厚度为5 cm.
Abstract
A several photons high accuracy multi-beam three-dimensional imaging Lidar system based on 8×8 array SiPM (Silicon photomultiplier) was introduced. The theoretical calculation and system design of laser ranging were given. According to the 64 laser beam transmitted in parallel, fiber array was used to realize the alignment of laser beam and detector. The off-axis three-mirror optical transceiver system, ultra-narrowband filter structure and 64-channel high-speed parallel readout circuit were designed, and a prototype of Lidar was built. Experimental verification result indicates that 64 channels are in good uniformity under static 21 m ranging, ranging accuracy is 1 cm and maximum distance deviation is 6 cm. In three-dimensional, imaging resolution is 512×512, imaging time is 100 ms, different targets of 15 cm can be distinguished, and the thickness of plane is 5 cm.
参考文献

[1] Xu Z P, Shen H H, Xu Y S. Review of the development of laser active imaging system with direct ranging [J]. Chinese Optics(徐正平,沈宏海,许永森. 直接测距型激光雷达主动成像系统发展现状[J]. 中国光学),2015,8(1): 28-38.

[2] Riris H, Sun X, Cavanaugh J F, et al. The lunar orbiter laser altimeter (LOLA) on NASA′s lunar reconnaissance orbiter (LRO) mission [C]//Conference on lasers and electro-optics. Optical Society of America, 2008: CMQ1.

[3] Hagopian J, Bolcar M, Chambers J, et al. Advanced topographic laser altimeter system (ATLAS) receiver telescope assembly (RTA) and transmitter alignment and test [J]. Earth Observing Systems XXI. International Society for Optics and Photonics, 2016, 9972: 997207.

[4] Anthony W Y, Krainak M A, Harding D J, et al. Development effort of the airborne lidar simulator for the lidar surface topography (LIST) mission [J]. Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII. International Society for Optics and Photonics, 2011, 8182: 818207.

[5] Anthony W Y, Krainak M A, Harding D J, et al. Spaceborne laser instruments for high-resolution mapping [J]. Solid State Lasers XIX: Technology and Devices. International Society for Optics and Photonics, 2010, 7578: 757802.

[6] LI Liang, GONG Guang-Hua. The new development of silicon photomultiplier [C]// National Annual Conference on Nuclear Electronics and Nuclear Detection Technology, 2010. (李亮, 龚光华. 硅光电倍增管的新发展[C]//全国核电子学与核探测技术学术年会. 2010).

[7] Buzhan P, Dolgoshein B, Filatov L, et al. Silicon photomultiplier and its possible applications[J]. Nuclear Inst & Methods in Physics Research A, 2003, 504(1-3):48-52.

[8] Yeom J Y, Vinke R, Pavlov N, et al. Performance of fast timing silicon photomultipliers for scintillation detectors [C]// Nuclear Science Symposium and Medical Imaging Conference. IEEE, 2013.

[9] Herbert D J, Moehrs S, D’Ascenzo N, et al. The silicon photomultiplier for application to high-resolution positron emission tomography [J]. Nuclear Instruments & Methods in Physics Research, 2007, 573(1):84-87.

[10] Hou L B. Research on key technology of photon counting imaging lidar in moving conditions [D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2013. (侯利冰. 运动平台条件下光子计数激光成像雷达关键技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2013).

[11] Gruber L, Brunner S E, Marton J, et al. Over saturation behavior of SiPMs at high photon exposure [J]. Nuclear Instruments & Methods in Physics Research, A, 2014, 737(2):11-18.

[12] Technical note: An introduction to the silicon photomultiplier [S]. Application Note, 2011.

[13] Rech I, Ingargiola A, Spinelli R, et al. Optical crosstalk in single photon avalanche diode arrays: a new complete model [J]. Optics Express, 2008, 16(12): 8381-94.

[14] Hu C S. Investigation into the high-speed pulsed laser diode 3D-imaging ladar [D]. Changsha: National University of Defense Technology, 2005. (胡春生. 脉冲半导体激光器高速三维成像激光雷达研究[D]. 长沙: 国防科技大学,2005).

[15] Chen P F. Research of key technologies of wide dynamic range and high precision laser distance measurement [D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014. (程鹏飞. 大动态范围高精度激光测距关键技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2014).

刘鸿彬, 李铭, 王凤香, 黄庚华, 胡以华. 一种少光子高精度多波束激光雷达系统及验证[J]. 红外与毫米波学报, 2019, 38(4): 04535. LIU Hong-Bin, LI Ming, WANG Feng-Xiang, HUANG Geng-Hua, HU Yi-Hua. A high accuracy multi-beam Lidar system and its verification on several photons[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04535.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!