红外与激光工程, 2019, 48 (1): 0106008, 网络出版: 2019-04-02   

超短脉冲激光微孔加工(上)——理论研究

Ultrashort pulse laser drilling of micro-holes (part 1)--theoretical study
作者单位
1 上海工程技术大学 材料工程学院, 上海 201620
2 上海市激光先进制造技术协同创新中心, 上海 201620
3 西安交通大学 机械制造系统国家重点实验室, 陕西 西安 710049
摘要
自20世纪60年代激光器被发明以来, 其脉冲宽度被不断压缩至亚皮秒及飞秒量级, 使得激光加工技术进入到了超短脉冲阶段。为了进一步优化超短脉冲激光的微加工, 理论研究必不可少。主要论述了超短脉冲激光与不同类型材料之间的相互作用机制。简述了超短脉冲激光微孔加工中的典型物理特性, 如等离子体效应、自聚焦和光丝效应及锥形辐射等。分析了超短脉冲激光微孔加工的理论研究现状, 并得出了目前理论研究中存在的问题。
Abstract
Since the invention of lasers in the 1960s, the pulse duration has being continuously shorten down to the sub-picosecond and even femtosecond regime. It makes the laser processing technology to the ultrashort pulse laser era. In order to further optimize the ultrashort pulse laser micro-machining, theoretical study is indispensable. The interaction mechanism between ultrashort pulse laser and different types of materials were presented. The typical physical properties, such as plasma effect, self-focusing and filamentation, and conical radiation, were discussed. The theoretical studies for ultrashort pulse laser drilling of micro-hole were analyzed. Furthermore, the challenging issues were obtained.
参考文献

[1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1969, 187(4736): 134-136.

[2] Siegal Y, Glezer E N, L Huang A, et al. Laser-induced phase transitions in semiconductors[J]. Annual Review of Materials Research, 1995, 25(1): 223-247.

[3] Wang Xiaodong. Ablation and micromachining of metals with short and ultra-short laser pulses[D]. Wuhan: Huazhong University of Science and Technology, 2009. (in Chinese)

[4] Lu Shiji. A course on solid physics [M]. Beijing: Peking University Press, 1990. (in Chinese)

[5] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A Materials Science & Processing, 1996, 63(2): 109-115.

[6] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1(4): 217.

[7] Linde D V D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, s109-110: 1-10.

[8] Bauerle D. Laser Processing and Chemistry[M]. Berlin: Springer, 2000: 291-292.

[9] Shah J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures[M]. Berlin: Springer, 1999.

[10] Hüttner B, Rohr G. On the theory of ps and sub-ps laser pulse interaction with metals I. Surface temperature[J]. Applied Surface Science, 1996, 103(3): 269-274.

[11] Downer M C, Shank C V. Ultrafast heating of silicon on sapphire by femtosecond optical pulses[J]. Physical Review Letters, 1986, 56(56): 761-764.

[12] Kaiser A, Rethfeld B, Vicanek M, et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Physical Review B, 2000, 61(17): 11437-11450.

[13] Jiang L, Tsai H L. Prediction of crater shape in femtosecond laser ablation of dielectrics[J]. Journal of Physics D Applied Physics, 2004, 37(10): 1492.

[14] Sugioka K, Cheng Y. Ultrafast Laser Processing: from Micro-to Nanoscale[M]. Singapore: Pan Stanford Pub, 2013.

[15] Küper S, Stuke M. Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses[J]. Applied Physics Letters, 1989, 54(1): 4-6.

[16] Li Yi. Heat accumulation in high repetition rate femtosecond laser micromachining and its applications[D]. Tianjin: Tianjin University, 2012. (in Chinese)

[17] Fan C H, Sun J, Longtin J P. Plasma Absorption of Femtosecond Laser Pulses in Dielectrics[J]. Journal of Heat Transfer, 2002, 124(2): 275-283.

[18] Zhang Wentao. Research on the interaction between femtosecond and the silicon nitride crystal film[D]. Xi′an: Northwest University, 2009. (in Chinese)

[19] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to- femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B Condensed Matter, 1996, 53(4): 1749.

[20] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 2006, 100(2): 729.

[21] Russo R E, Mao X L, Liu H C, et al. Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation[J]. Applied Physics A, 1999, 69(1): S887-S894.

[22] Mao S S, Mao X, Greif R, et al. Initiation of an early-stage plasma during picosecond laser ablation of solids[J]. Applied Physics Letters, 2000, 77(16): 2464-2466.

[23] Dausinger F, Lubatschowski H, Lichtner F. Femtosecond Technology for Technical and Medical Applications[M]. Topics in Applied Physics, 96. Berlin, Heidelberg: Springer, 2004.

[24] Breitling D, Dausinger F. Fundamental aspects in machining of metals with short and ultrashort laser pulses[C]//SPIE, 2004, 5339: 49-63.

[25] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 2000, 71(6): 877-879.

[26] Stafe M, Marcu A, Puscas N N. Pulsed Laser Ablation of Solids[M]. Berlin: Springer, 2014: 758-770.

[27] Marburger J H, Dawes E. Dynamical formation of a small-scale filament[J]. Physical Review Letters, 1968, 21(8): 556-558.

[28] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2-4): 47-189.

[29] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75.

[30] Schaaf P. Laser Processing of Materials: Fundamentals, Applications and Developments[M]. Berlin: Springer, 2010: 15-21.

[31] Courvoisier F, Boutou V, Kasparian J, et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 2003, 83(2): 213-215.

[32] Monot P, Auguste T, Gibbon P, et al. Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma[J]. Physical Review Letters, 1995, 74(15): 2953.

[33] Pukhov A. Strong field interaction of laser radiation[J]. Reports on Progress in Physics, 2003, 65(1): 1-55.

[34] Breitling D, Ruf A, Berger P W, et al. Plasma effects during ablation and drilling using pulsed solid-state lasers[C]//SPIE, 2003, 5121: 24-33.

[35] Golub I. Optical characteristics of supercontinuum generation[J]. Optics Letters, 1990, 15(6): 305.

[36] Nibbering E T, Curley P F, Grillon G, et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics Letters, 1996, 21(1): 62.

[37] Sun J, Longtin J P. Effects of a gas medium on ultrafast laser beam delivery and materials processing[J]. Journal of the Optical Society of America B, 2004, 21(5): 1081-1088.

[38] Kaganov M I, Lifshits I M, Tanatarov L V. Relaxation between electrons and crystalline lattice[J]. Sov Phys JETP, 1957, 4(31): 173.

[39] Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1974, 66(776): 776-781.

[40] Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals[J]. Journal of Heat Transfer, 1993, 115: 4(4): 835-841.

[41] Xu Xiaofang. Study on transient reflectivity phenomenon on the surfaceas of metal films induced by femtosecond laser[D]. Zhenjiang: Jiangsu University, 2013. (in Chinese)

[42] Anisimov S I, Rethfeld B. Theory of ultrashort laser pulse interaction with a metal[C]//SPIE, 1997, 3093: 192-203.

[43] Kotake S, Kuroki M. Molecular dynamics study of solid melting and vaporization by laser irradiation[J]. International Journal of Heat & Mass Transfer, 1993, 36(8): 2061-2067.

[44] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 2005, 127(10): 1167.

[45] Bévillon E, Colombier J P, Recoules V, et al. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals[J]. Applied Surface Science, 2015, 336: 79-84.

[46] Bevillon E, Colombier J P, Dutta B, et al. Ab initio nonequilibrium thermodynamic and transport properties of ultrafast laser irradiated 316L stainless steel[J]. Journal of Physical Chemistry C, 2015, 119: 11438-11446.

[47] Nedialkov N N, Atanasov P A. Molecular dynamics simulation study of deep hole drilling in iron by ultrashort laser pulses[J]. Applied Surface Science, 2006, 252(13): 4411-4415.

[48] Urbassek H M, Rosandi Y. Insight from molecular dynamics simulation into ultrashort-pulse laser ablation[C]//SPIE, 2010, 7842(1): 104-104.

[49] Wang Xinlin. Femtosecond laser ablation of metallic materials and fabrication of micro-components[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)

[50] Rouleau C M, Shih C Y, Wu C, et al. Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: Time-resolved measurements and molecular dynamics simulations[J]. Applied Physics Letters, 2014, 104(19): 312-124.

[51] Wu C, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Applied Physics A, 2014, 114(1): 11-32.

赵万芹, 梅雪松, 王文君. 超短脉冲激光微孔加工(上)——理论研究[J]. 红外与激光工程, 2019, 48(1): 0106008. Zhao Wanqin, Mei Xuesong, Wang Wenjun. Ultrashort pulse laser drilling of micro-holes (part 1)--theoretical study[J]. Infrared and Laser Engineering, 2019, 48(1): 0106008.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!