中国激光, 2016, 43 (9): 0901006, 网络出版: 2018-05-25  

高峰值功率皮秒超短脉冲抽运KTP晶体倍频研究

Second-Harmonic Generation Through KTP Crystal Pumped by High-Peak-Power Picosecond Ultrashort Pulse
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
脉冲光纤激光器具有输出光束质量好、峰值功率高等优势,易于激发晶体内部的非线性效应。晶体非线性效应能够将光纤激光的近红外输出波段变换至深紫外或中红外等波段。利用实验室自主搭建的中心波长为1064 nm,脉宽为650 ps的脉冲光纤激光器抽运KTP(磷酸钛氧钾)晶体,实现了高功率超短脉冲对1064 nm激光的单程倍频,输出532 nm激光。将脉冲宽度由650 ps压缩至1 ps后,抽运激光的峰值功率密度达到24.97 GW/cm2,有效地将单程倍频转换效率从0.8%提高到8.4%。研究了不同平均功率、脉宽、光斑直径的超短脉冲下KTP晶体的倍频效率,验证了未来在振荡腔结构下实现KTP晶体高效倍频的可行性。
Abstract
With high peak power and good beam quality, it is easy for pulsed fiber lasers to trigger nonlinear process in a nonlinear crystal, and the near-infrared laser can be transferred into the ultra-violet or mid-infrared regime. In an experiment, the homemade high power pulsed fiber laser with central wavelength of 1064 nm and pulse duration of 650 ps is used to pump KTP (potassium titanyl phosphate) crystal, and the 532 nm laser is output after second-harmonic generation (SHG). In the process, the pulse width is compressed from 650 ps to 1 ps, the peak power density of the pump laser is raised to 24.97 GW/cm2, and the SHG efficiency increases from 0.8% to 8.4%. SHG efficiency is investigated for the pump laser of different average power, pulse width and beam spot, and the possibility to achieve highly efficient SHG with an oscillator is proved.
参考文献

[1] di Teodoro F, Brooks C D. 1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier[J]. Optics Letters, 2005, 30(20): 2694-2696.

[2] Teh P S, Lewis R J, Alam S, et al. 200 W diffraction limited, single-polarization, all-fiber picosecond MOPA[J]. Optics Express, 2013, 21(22): 25883-25889.

[3] Shi W, Fang Q, Fan J. 700 kW peak power monolithic nanosecond pulsed fiber laser[C]. CLEO: Science and Innovations, 2014: STu2N.2.

[4] Heidt A M, Li Z, Sahu J, et al. 100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm[J]. Optics Letters, 2013, 38(10): 1615-1617.

[5] Apurv C N, Aadhi A, Singh R P, et al. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal[J]. Optics Letters, 2014, 39(18): 5419-5422.

[6] Gan Y, Gu X, Koo J Y C, et al. Second harmonic generation using an all-fiber Q-switched Yb-doped fiber laser and MgOc-PPLN[J]. Advances in Optoelectronics, 2008, 2008: 956908.

[7] 于海龙, 王小林, 张汉伟, 等. 300 W线偏振飞秒全光纤啁啾脉冲放大系统[J]. 强激光与粒子束, 2016, 28(5): 050101.

    Yu Hailong, Wang Xiaolin, Zhang Hanwei, et al. 300 W linearly polarized femtosecond all-fiber chirped pulse amplification system[J]. High Power Laser and Particle Beams, 2016, 28(5): 050101.

[8] 张彦栋. KTP晶体的生长与性能研究[D]. 北京: 北京工业大学, 2009.

    Zhang Yandong. Study of the growth and properties of the KTP crystal[D]. Beijing: Beijing University of Technology, 2009.

[9] 胡静. 高品质非线性光学晶体KTP的生长及性能研究[D]. 北京: 中国科学院研究生院, 2009.

    Hu Jing. Research on growth of high quality KTP crystal and its properties[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2009.

[10] 陈家璧. 激光原理及应用[M]. 北京: 电子工业出版社, 2013.

    Chen Jiabi. Laser principles and applications[M]. Beijing: Publishing House of Electronics Industry, 2013.

[11] 黄海涛. 基于抗灰迹KTP晶体的单一及复合非线性频率转换研究[D]. 济南: 山东大学, 2011.

    Huang Haitao. Study on the single and mixed nonlinear frequency conversions based on the gray-tracking resistance KTP[D]. Jinan: Shandong University, 2011.

沈梅力, 李霄, 于海龙, 尚亚萍, 许晓军. 高峰值功率皮秒超短脉冲抽运KTP晶体倍频研究[J]. 中国激光, 2016, 43(9): 0901006. Shen Meili, Li Xiao, Yu Hailong, Shang Yaping, Xu Xiaojun. Second-Harmonic Generation Through KTP Crystal Pumped by High-Peak-Power Picosecond Ultrashort Pulse[J]. Chinese Journal of Lasers, 2016, 43(9): 0901006.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!