中国激光, 2015, 42 (3): 0314002, 网络出版: 2015-02-13   

基于多项式模型的TLS激光强度值改正

TLS Laser Intensity Correction Based on Polynomial Model
作者单位
同济大学测绘与地理信息学院, 上海 200092
摘要
从激光雷达测距方程出发,根据扫描仪的辐射机制,运用多项式模型拟合激光强度值与接收功率之间的关系。由于系统参数与目标反射率未知,接收功率无法获取,所以通过激光入射角的余弦与激光测距值平方的组合,构造新变量,实现目标反射率与扫描几何因素的分离,根据多项式模型建立激光强度值与新变量之间的模型关系。定义了标准测距值与标准入射角,分析残差特性,对激光强度中的距离和入射角效应进行改正。通过实验进行验证分析。实验结果表明:该方法能有效地去除由距离和入射角引起的强度偏差,精确地对激光强度值进行改正。
Abstract
Starting from the laser radar range equation, the polynomial model is adopted to fit the relationship between the laser intensity value and the received power based on the instrumental radiometric mechanism. Because of the unknown system parameters and target reflectance, it is impossible to compute the definite received laser power. So, by constructing the new variable constituted by the combination of the cosine of the incidence angle and the square of the range, the scanning geometry factors and target reflectance are separated and the polynomial model is used to fit the relationship between the laser intensity and the new variable. The standard range and the standard incidence angle are defined, and the intensity biases caused by the range and the incidence angle are corrected by analyzing. Experiments are conducted to test and verify the proposed method. Results show that the method can effectively remove the variations and biases caused by the range and incidence angle as well as accurately obtain the corrected laser intensity value proportional to the reflectance of the scanned point.
参考文献

[1] Pfeifer N, Hofle B, Briese C, et al.. Analysis of the backscattered energy in terrestrial laser scanning data[J]. Int Arch Photogramm Remote Sens Spat Inf Sci, 2008, 37: 1045-1052.

[2] Hofle B, Pfeifer N. Correction of laser scanning intensity data: Data and model-driven approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2007, 62(6): 415-433.

[3] Pfeifer N, Dorninger P, Haring A, et al.. Investigating terrestrial laser scanning intensity data: quality and functional relations[C]. Proceedings of the VIII Conference on Optical 3D Measurement Technology, 2007: 328-337.

[4] Oh D. Radiometric correction of mobile laser scanning intensity data[J]. International Institute for Geo-information Science and Earth Observation, Enchede Netherlands Master of Science thesis in Geo-information Science and Earth Observation, 2010.

[5] Yan W Y, Shaker A, Habib A, et al.. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 35-44.

[6] Coren F, Sterzai P. Radiometric correction in laser scanning[J]. International Journal of Remote Sensing, 2006, 27(15): 3097-3104.

[7] Ding Q, Chen W, King B, et al.. Combination of overlap-driven adjustment and Phong model for LiDAR intensity correction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75: 40-47.

[8] Jutzi B, Gross H. Normalization of LiDAR intensity data based on range and surface incidence angle[J]. Int Arch Phogogramm Remote Sens Spat Inf Sci, 2009, 38: 213-218.

[9] Errington A F C, Daku B L F, Prugger A F. A model based approach to intensity normalization for terrestrial laser scanners[C]. SPIE, 2011: 828605.

[10] Cheng X J, Tan K, Lou Q Y. Relations of the laser intensity value, the laser ranging value and the laser incident angle[J]. Applied Mechanics and Materials, 2013, 239: 198-201.

[11] Soudarissanane S, Lindenbergh R, Menenti M, et al.. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4): 389-399.

[12] Soudarissanane S, Van Ree J, Bucksch A, et al.. Error budget of terrestrial laser scanning: Influence of the incidence angle on the scan quality[J]. Proc in the 3D-NordOst, 2007: 1-8.

[13] Kaasalainen S, Jaakkola A, Kaasalainen M, et al.. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods[J]. Remote Sensing, 2011, 3(10): 2207-2221.

[14] Kukko A, Kaasalainen S, Litkey P. Effect of incidence angle on laser scanner intensity and surface data[J]. Appl Opt, 2008, 47(7): 986-992.

[15] 谭凯, 程效军. 激光强度值改正模型与点云分类精度[J]. 同济大学学报(自然科学版), 2014, 42(1): 131-135.

    Tan Kai, Cheng Xiaojun. Study on the accuracy of point cloud clssification based on the normalized laser intensity[J]. Journal of Tongji University(Natural Science), 2014, 42(1): 131-135.

[16] 刘经南, 张小红. 利用激光强度信息分类激光扫描测高数据[J]. 武汉大学学报(信息科学版), 2005, 30(3): 189-193.

    Liu Jingnan, Zhang Xiaohong. Classification of laser scanning altimetry data using laser intensity[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 189-193.

[17] 黄磊, 卢秀山, 梁勇. 基于激光扫描回光强度的建筑物立面信息提取与分类[J]. 武汉大学学报(信息科学版), 2009, 34(2): 195-198.

    Huang Lei, Lu Xiushan, Liang Yong. Building facade extraction and classification using laser scanning intensity[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 195-198.

[18] Jelalian A V. Laser Radar Systems[M]. Boston: Artech House, 1992.

[19] Andrews L. A template for the nearest neighbor problem[J]. C/C++ Users Journal, 2001, 19(11): 40-49.

[20] Arya S, Mount D M, Netanyahu N S, et al.. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions[J]. JACM, 1998, 45(6): 891-923.

谭凯, 程效军. 基于多项式模型的TLS激光强度值改正[J]. 中国激光, 2015, 42(3): 0314002. Tan Kai, Cheng Xiaojun. TLS Laser Intensity Correction Based on Polynomial Model[J]. Chinese Journal of Lasers, 2015, 42(3): 0314002.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!