激光与光电子学进展, 2018, 55 (11): 110003, 网络出版: 2019-08-14   

布里渊光时域分析系统性能提高方法综述 下载: 1328次

Review of Methods for Improving Performance of Brillouin Optical Time-Domain Analysis System
作者单位
华北电力大学电子与通信工程系, 河北 保定 071003
引用该论文

王健健, 李永倩. 布里渊光时域分析系统性能提高方法综述[J]. 激光与光电子学进展, 2018, 55(11): 110003.

Jianjian Wang, Yongqian Li. Review of Methods for Improving Performance of Brillouin Optical Time-Domain Analysis System[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110003.

参考文献

[1] Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.

[2] 周子超, 王小林, 粟荣涛, 等. 分布式光纤传感在光纤激光中的应用研究[J]. 激光与光电子学进展, 2016, 53(8): 080006.

    Zhou Z C, Wang X L, Su R T, et al. Application of distributed fiber sensing in fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080006.

[3] Boyd RW. Nonlinear Optics[M]. New York: Academic Press, 2007.

[4] KurashimaT, HoriguchiT, IzumitaH, et al. Brillouin optical-fiber time domain reflectometry[J]. IEICE Transactions on Communications, 1993, E76-B( 4): 382- 390.

[5] Cho Y T, Alahbabi M, Gunning M J, et al. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification[J]. Optics Letters, 2003, 28(18): 1651-1653.

[6] Cho Y T, Alahbabi M N, Gunning M J, et al. Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification[J]. Measurement Science and Technology, 2004, 15(8): 1548-1552.

[7] Cho YT, AlahbabiM, BrambillaG, et al. Brillouin based OTDR with measurement range of 85 km using combined EDFA and Raman amplification[C]//Conference on Laser and Electro-Optics, May 16-21, 2004, San Francisco. New York: IEEE, 2004: 8303939.

[8] Rodriguez-Barrios F, Martin-Lopez S, Carrasco-Sanz A, et al. Distributed Brillouin fiber sensor assisted by first-order Raman amplification[J]. Journal of Lightwave Technology, 2010, 28(15): 2162-2172.

[9] Martin-Lopez S, Alcon-Camas M, Rodriguez F, et al. Brillouin optical time-domain analysis assisted by second-order Raman amplification[J]. Optics Express, 2010, 18(18): 18769-18778.

[10] Soto M A, Bolognini G, Di Pasquale F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification[J]. Optics Express, 2011, 19(5): 4444-4457.

[11] Jia X H, Rao Y J, Chang L, et al. Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: theoretical and experimental investigation[J]. Journal of Lightwave Technology, 2010, 28(11): 1624-1630.

[12] 张超, 饶云江, 贾新鸿, 等. 基于双向拉曼放大的布里渊光时域分析系统[J]. 物理学报, 2010, 59(8): 5523-5527.

    Zhang C, Rao Y J, Jia X H, et al. Brillouin optical time domain analyzer based on bidirectional Raman amplification[J]. Acta Physica Sinica, 2010, 59(8): 5523-5527.

[13] 饶云江, 苌亮, 贾新鸿, 等. 基于拉曼放大和半导体光放大的BOTDA[J]. 电子科技大学学报, 2012, 41(4): 621-625.

    Rao Y J, Chang L, Jia X H, et al. Brillouin optical time domain analysis system based on Raman amplification and semiconductor optical amplifier[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(4): 621-625.

[14] 贾新鸿, 饶云江, 王子南, 等. 拉曼放大布里渊光时域分析系统非局域效应[J]. 强激光与粒子束, 2012, 24(7): 1667-1671.

    Jia X H, Rao Y J, Wang Z N, et al. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification[J]. High Power Laser and Particle Beams, 2012, 24(7): 1667-1671.

[15] 姜芸, 贾新鸿, 王子南, 等. 基于随机分布式反馈光纤激光器的100 km布里渊光时域分析系统[J]. 光电子·激光, 2013, 24(1): 45-49.

    Jiang Y, Jia X H, Wang Z N, et al. 100 km Brillouin optical time domain analyzer based on radom distributed feedback fiber laser pumping[J]. Journal of Optoelectronics·Laser, 2013, 24(1): 45-49.

[16] 秦祖军, 梁国令, 张文涛, 等. 分布式拉曼放大对布里渊时域分析的负面影响[J]. 光学学报, 2015, 35(s2): s206002.

    Qin Z J, Liang G L, Zhang W T, et al. Negative effects of distributed Raman amplification on long distance Brillouin optical time-domain analyzer[J]. Acta Optica Sinica, 2015, 35(s2): s206002.

[17] Soto MA, BologniniG, Di PasqualeF, et al. Enhanced long-range distributed strain and temperature sensing usingBOTDA and optical pulse coding[C]∥2009 35th European Conference on Optical Communication, September 20-24, 2009, Vienna. New York: IEEE, 2009, 2009-supplement.

[18] Soto M A, Bolognini G, Di Pasquale F, et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 2010, 35(2): 259-261.

[19] Soto M A, Bolognini G, Di Pasquale F, et al. Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques[J]. Measurement Science and Technology, 2010, 21(9): 094024.

[20] Soto M A, Le F S, Thévenaz L. Bipolar pulse coding for enhanced in Brillouin distributed optical fiber sensors[J]. Proceeding of SPIE, 2012, 8421: 84219Y.

[21] Soto M A, Le F S, Thévenaz L. Bipolar optical pulse coding for performance enhancement in BOTDA sensors[J]. Optics Express, 2013, 21(14): 16390-16397.

[22] Soto M A, Bolognini G, Di Pasquale F. Analysis of pulse modulation format in coded BOTDA sensors[J]. Optics Express, 2010, 18(14): 14878-14892.

[23] Soto M A, Bolognini G, Di Pasquale F. Long-range Simplex-coded BOTDA sensor over 120 km distance employing optical preamplification[J]. Optics Letters, 2011, 36(2): 232-234.

[24] Jia X H, Rao Y J, Deng K, et al. Experimental demonstration on 2.5-m spatial resolution and 1 ℃ temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding[J]. IEEE Photonics Technology Letters, 2011, 23(7): 435-437.

[25] Taki M, Soto M A, Di Pasquale F, et al. Long-range BOTDA sensing using optical pulse coding and single source bi-directional distributed Raman amplification[J]. Proceedings of IEEE Sensors, 2011: 382-385.

[26] Bao X, Brown A. DeMerchant M, et al. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses[J]. Optics Letters, 1999, 24(8): 510-512.

[27] Lecoeuche V, Webb D J, Pannell C N, et al. Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time[J]. Optics Letters, 2000, 25(3): 156-158.

[28] Li W H, Bao X Y, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.

[29] Li Y, Bao X Y, Dong Y K, et al. A novel distributed Brillouin sensor based on optical differential parametric amplification[J]. Journal of Lightwave Technology, 2010, 28(18): 2621-2626.

[30] Horiguchi T, Muroi R, Iwasaka A, et al. BOTDA utilizing phase-shift pulse[J]. The IEICE transactions on communications B, 2008, 91(2): 207-216.

[31] Liang H, Li W H, Linze N, et al. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses[J]. Optics Letters, 2010, 35(10): 1503-1505.

[32] Soto M A, Taki M, Bolognini G, et al. Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification[J]. Optics Express, 2012, 20(7): 6860-6869.

[33] Taki M, Bolognini G, Di Pasquale F. Raman-assisted DPP-BOTDA sensor employing Simplex coding with sub-meter scale spatial resolution over 93 km standard SMF[J]. Proceeding of SPIE, 2012, 8421: 84219M.

[34] 罗源, 闫连山, 邵理阳, 等. 基于布里渊光时域分析传感系统的格雷-差分脉冲混合编码技术[J]. 光学学报, 2016, 36(8): 0806002.

    Luo Y, Yan L S, Shao L Y, et al. Golay-differential pulse hybrid coding technology based on Brillouin optical time domain analysis sensors[J]. Acta Optica Sinica, 2016, 36(8): 0806002.

[35] Horiguchi T. A dual Golay complementary pair of sequences for improving the performance of phase-shift pulse BOTDA fiber sensor[J]. Journal of Lightwave Technology, 2012, 30(21): 3338-3356.

[36] Tsumuraya T, Horiguchi T. The use of Walsh code in modulating the pump light of high spatial resolution phase-shift-pulse Brillouin optical time domain analysis with non-return-to-zero pulses[J]. Measurement Science and Technology, 2013, 24(9): 094025.

[37] Zan M S D B, YokoyamaK, HoriguchiT. Combination of Walsh and Golay codes in modulating the pump light of phase-shift pulse BOTDA sensor[C]//2013 IEEE 4th International Conference on Photonics, October 28-30, 2013, Melaka, Malaysia. New York: IEEE, 2013: 160- 162.

[38] Zan M S D B, Bakar A AA, HoriguchiT. Improvement of signal-to-noise-ratio by combining Walsh and Golay codes in modulating the pump light of phase-shift pulse BOTDA fiber sensor[C]//2015 9th International Conference on Sensing Technology, December 8-10, 2015, Auckland, New Zealand. New York: IEEE, 2016: 269- 273.

[39] Zan M S D B, Bakar A AA, HoriguchiT. Analysis on the employment of dual Walsh codes in the phase-shift pulse BOTDA (PSP-BOTDA) fiber sensing technique[C]∥2016 IEEE 6th International Conference on Photonics, March 14-16, 2016, Kuching, Malaysia. New York: IEEE, 2016: 16143010.

[40] Sun Q, Tu X B, Sun S L, et al. Long-range BOTDA sensor over 50 km distance employing pre-pumped Simplex coding[J]. Journal of Optics, 2016, 18(5): 055501.

[41] Minardo A, Bernini R, Zeni L. A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors[J]. IEEE Sensors Journal, 2009, 9(6): 633-634.

[42] Zornoza A, Sagues M, Loayssa A. Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA[J]. Journal of Lightwave Technology, 2012, 30(8): 1066-1072.

[43] Thévenaz L, Mafang S F, Lin J. Effect of pulse depletion in a Brillouin optical time-domain analysis system[J]. Optics Express, 2013, 21(12): 14017-14035.

[44] Dominguez-Lopez A, Angulo-Vinuesa X, Lopez-Gil A, et al. Non-local effects in dual-probe-sideband Brillouin optical time domain analysis[J]. Optics Express, 2015, 23(8): 10341-10352.

[45] Ruiz-Lombera R, Urricelqui J, Sagues M, et al. Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors[J]. IEEE Photonics Journal, 2015, 7(6): 6803609.

[46] Iribas H, Loayssa A, Sauser F, et al. Enhancement of signal-to-noise ratio in Brillouin optical time domain analyzers by dual-probe detection[J]. Proceeding of SPIE, 2017, 10323: 103237D.

[47] Iribas H, Loayssa A, Sauser F, et al. Cyclic coding for Brillouin optical time-domain analyzers using probe dithering[J]. Optics Express, 2017, 25(8): 8787-8800.

[48] Hu J H, Zhang X P, Yao Y G, et al. A BOTDA with break interrogation function over 72 km sensing length[J]. Optics Express, 2013, 21(1): 145-153.

[49] Dominguez-Lopez A, Lopez-Gil A, Martin-Lopez S, et al. Signal-to-noise ratio improvement in BOTDA using balanced detection[J]. IEEE Photonics Technology Letters, 2014, 26(4): 338-341.

[50] Zhang L, Wang Z N, Li J, et al. Ultra-long dual-sideband BOTDA with balanced detection[J]. Optics & Laser Technology, 2015, 68: 206-210.

[51] Soto M A, Ricchiuti A L, Zhang L, et al. Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers[J]. Optics Express, 2014, 22(23): 28584-28595.

[52] LalamN, Ng WP, Dai XW. Employing wavelength diversity technique to enhance the Brillouin gain response in BOTDA system[C]∥Optical Fiber Communication Conference, March 20-22, 2016, Anaheim, California. Washington DC: Optical Society of America, 2016: M2D. 4.

[53] 李永倩, 张立欣, 李晓娟, 等. 瑞利布里渊光时域分析系统传感性能的提升方法[J]. 光学学报, 2017, 37(1): 0106001.

    Li Y Q, Zhang L X, Li X J, et al. Performance improvement method of Rayleigh Brillouin optical time domain analysis system[J]. Acta Optica Sinica, 2017, 37(1): 0106001.

[54] 张立欣, 李永倩, 安琪, 等. 脉冲编码瑞利布里渊光时域分析温度传感技术[J]. 光学学报, 2017, 37(11): 1106004.

    Zhang L X, Li Y Q, An Q, et al. Temperature sensing technology based on Rayleigh Brillouin optical time domain analysis with pulse coding[J]. Acta Optica Sinica, 2017, 37(11): 1106004.

[55] 李永倩, 李婷, 安琪, 等. 脉冲预抽运瑞利BOTDA系统的解析模型与仿真[J]. 红外与激光工程, 2016, 45(8): 86-93.

    Li Y Q, Li T, An Q, et al. Analytical model and simulation of pulsed pre-pump Rayleigh BOTDA system[J]. Infrared and Laser Engineering, 2016, 45(8): 86-93.

王健健, 李永倩. 布里渊光时域分析系统性能提高方法综述[J]. 激光与光电子学进展, 2018, 55(11): 110003. Jianjian Wang, Yongqian Li. Review of Methods for Improving Performance of Brillouin Optical Time-Domain Analysis System[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110003.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!