人工晶体学报, 2020, 49 (4): 624, 网络出版: 2020-06-15   

具有可见光响应的磷烯/g-C3N4异质结的构建及其在高效太阳能分解水制氢中的应用

Construction of Phosphoene/g-C3N4 Heterojunction with Visible Light Response and Its Application in High Efficiency Hydrogen Production from Solar Water Splitting
作者单位
中国计量大学材料与化学学院,杭州 310018
摘要
近年来,二维(2D)g-C3N4基材料因其较短的电荷传输距离和充分暴露的表面活性位点,受到科研工作者的广泛关注。然而,g-C3N4较差的电荷分离和光吸收能力限制了进一步实际应用。通过引入具有高载流子迁移率和可见光响应的磷烯(FBP),构建FBP/g-C3N4异质结同时增强光催化剂的光吸收和电荷分离能力;同时,具有良好催化活性的FBP也可以作为g-C3N4的助催化剂,进一步降低电荷在催化剂/电解液界面处的反应势垒,从而有效抑制电荷复合,并提高光催化制氢效率。研究结果表明:相较于纯g-C3N4,FBP/g-C3N4异质结不仅可以有效抑制电荷复合、促进光生电荷分离,而且可以极大地拓宽光谱响应范围。最终,构建的FBP/g-C3N4异质结光催化剂获得了1.08 mmol?g-1?h-1的光催化制氢速率,相较于纯g-C3N4提高了1.2倍。
Abstract
Recently, two-dimension g-C3N4 based materials have received tremendous attention, ascribing to its short charge diffusion distance and sufficiently exposed surface active sites. However, the poor charge separation and light harvesting still remains a great challenge for their practical applications. Herein, phosphorene/g-C3N4 heterojunction was constructed by simple introducing phosphorene which own visible light response and high mobility, to promote charge separation and light harvesting. Meanwhile, phosphorene can be regarded as effective co-catalyst for g-C3N4 to reduce the barrier of charge transfer between photocatalyst and electrolyte interface, and thus suppress charge recombination and improve photocatalytic hydrogen evolution rate. Compared to pure g-C3N4, the phosphorene/g-C3N4 heterojunction presents not only better charge separation and lower charge recombination, but also wider light response. As a result, the photocatalytic hydrogen evolution rate as high as 1.08 mmol?g-1?h-1 is achieved for phosphorene/g-C3N4 heterojunction, which is 1.2 times higher than the pure g-C3N4.
参考文献

[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.

[2] Liang J H, Chen D, Yao X, et al. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications[J].Small,2019:1903398.

[3] Chen X B, Liu L, Huang F Q. Black titanium dioxide (TiO2) nanomaterials[J].Chemical Society Reviews,2015,44(7):1861-1885.

[4] Di J, Xiong J, Li H M, et al. Ultrathin 2D photocatalysts:electronic-structure tailoring, hybridization, and applications[J].Advanced Materials,2018,30(1):1704548-1704578.

[5] Ong W. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis:why does face-to-face interface matter?[J].Frontiers in Materials,2017,4:11-21.

[6] Li M Q, Cui Z, Li E L. Silver-modified MoS2 nanosheets as a high-efficiency visible-light photocatalyst for water splitting[J].Ceramics International,2019,45(11):14449-14456.

[7] Liu Y, Xiong J, Luo S, et al. Ultrathin HNbWO6 nanosheets:facile synthesis and enhanced hydrogen evolution performance from photocatalytic water splitting[J].Chem. Commun (Camb),2015,51(82):15125-15128.

[8] Cao S W, Shen B J, Tong T, et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J].Advanced Functional Materials,2018,28(21):1800136-1800147.

[9] Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability?[J].Chemical Reviews,2016,116(12):7159-7329.

[10] Su J, Li G D, Li X H, et al. 2D/2D heterojunctions for catalysis[J].Advanced Science,2019,6(7):1801702-1801721.

[11] Low J X, Yu J G, Jaroniec M, et al. Heterojunction photocatalysts[J].Advanced Materials,2017,29(20):1601694-1601714.

[12] Low J X, Jiang C J, Cheng B, et al. A review of direct Z-Scheme photocatalysts[J].Small Methods,2017,1:1700080-1700101.

[13] Fu J W, Xu Q L, Low J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2 production photocatalyst[J].Applied Catalysis B-Environmental,2019,243:556-565.

[14] Xia P F, Zhu B C, Cheng B, et al. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-Scheme photocatalyst for enhanced photocatalytic activity[J].ACS Sustainable Chemistry & Engineering,2018,6(1):965-973.

[15] Yuan Y J, Shen Z K, Wu S T, et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity[J].Applied Catalysis B-Environmental,2019,246:120-128.

[16] Li W B, Wang L, Zhang Q, et al. Fabrication of an ultrathin 2D/2D C3N4/MoS2 heterojunction photocatalyst with enhanced photocatalytic performance[J].Journal of Alloys and Compounds,2019,808:151681-151690.

[17] Song Y H, Gu J M, Xia K X, et al. Construction of 2D SnS2/g-C3N4 Z-scheme composite with superior visible-light photocatalytic performance[J].Applied Surface Science,2019,467:56-64.

[18] Peng X H, Wei Q, Copple A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene[J].Physical Review B,2014,90(8):085402.

[19] Li B S, Lai C, Zeng G M, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene Era:synthesis, properties, modifications, and photocatalysis applications[J].Small,2019,15(8):e1804565.

[20] Lee T H, Kim S Y, Jang H W. Black phosphorus:Critical review and potential for water splitting photocatalyst[J].Nanomaterials,2016,6(11):194.

[21] Ran J R, Zhu B C, Qiao S Z. Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production[J].Angewandte Chemie-International Edition,2017,56(35):10373-10377.

[22] Liu H, Neal A T, Zhu Z, et al. Phosphorene:An unexplored 2D semiconductor with a high hole mobility[J].ACS Nano,2014,8(4):4033-4041.

[23] Ran J M, Guo W W, Wang H L, et al. Metal-free 2D/2D phosphorene/g-C3N4 Van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production[J].Advanced Materials,2018,30(25):1800128-1800136.

[24] Zhang Q Z, Huang S Y, Deng J J, et al. Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst:2D/2D heterostructure for broadband H2 evolution[J].Advanced Functional Materials,2019,29(28):1902486-1902496.

[25] Jiang J Z, Ou-yang L, Zhu L H, et al. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets:a study by Raman spectroscopy coupled with first-principles calculations[J].Carbon,2014,80:213-221.

[26] Ma J Z, Wang C Z, He H. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light[J].Applied Catalysis B:Environmental,2016,184:28-34.

[27] Guo Z N, Zhang H, Lu S B, et al. From black phosphorus to phosphorene:basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics[J].Advanced Functional Materials,2015,25(45):6996-7002.

[28] Zhang L L, Ding L X, Chen G F, et al. Ammonia synthesis under ambient conditions:Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets[J].Angewandte Chemie,2019,131(9):2638-2642.

[29] Yu W L, Xu D F, Peng T Y. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO:a direct Z-scheme mechanism[J].Journal of Materials Chemistry A,2015,3(39):19936-19947.

[30] Yuan A, Lei H, Xi F, et al. Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic removal of antibiotics[J].Journal of Colloid and Interface Science,2019,548:56-65.

[31] Zhang H, Han X, Yu H, et al. Enhanced photocatalytic performance of boron and phosphorous co-doped graphitic carbon nitride nanosheets for removal of organic pollutants[J].Separation and Purification Technology,2019,226:128-137.

[32] Yao C, Yuan A, Wang Z, et al. Amphiphilic two-dimensional graphitic carbon nitride nanosheets for visible-light-driven phase-boundary photocatalysis[J].Journal of Materials Chemistry A,2019,7:13071-13079.

[33] Yuan A, Lei H, Wang Z, et al. Improved photocatalytic performance for selective oxidation of amines to imines on graphitic carbon nitride/bismuth tungstate heterojunctions[J].Journal of Colloid and Interface Science,2020,560:40-49.

[34] Hu J D, Ji Y J, Mo Z, et al. Engineering black phosphorus to porous g-C3N4-metal-organic framework membrane:a platform for highly boosting photocatalytic performance[J].Journal of Materials Chemistry A,2019,7(9):4408-4414.

[35] Lei W Y, Mi Y, Feng R J, et al. Hybrid 0D-2D black phosphorus quantum dots-graphitic carbon nitride nanosheets for efficient hydrogen evolution[J].Nano Energy,2018,50:552-561.

许振霞, 梁俊辉, 陈达, 胡亦谦, 秦来顺, 黄岳祥. 具有可见光响应的磷烯/g-C3N4异质结的构建及其在高效太阳能分解水制氢中的应用[J]. 人工晶体学报, 2020, 49(4): 624. XU Zhenxia, LIANG Junhui, CHEN Da, HU Yiqian, QIN Laishun, HUANG Yuexiang. Construction of Phosphoene/g-C3N4 Heterojunction with Visible Light Response and Its Application in High Efficiency Hydrogen Production from Solar Water Splitting[J]. Journal of Synthetic Crystals, 2020, 49(4): 624.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!