作者单位
摘要
1 河南工业大学理学院, 郑州 450000
2 上海大学理学院物理系, 上海 201900
本文采用热聚合法和水热法成功制备了ZnO/g-C3N4系列复合光催化剂, 并对所制备样品的结构、形貌和光吸收性能等进行了表征和测试, 通过在可见光照射下降解亚甲基蓝(MB)和光解水产氢评估了样品的光催化性能。实验结果表明, 制备的ZnO/g-C3N4系列复合光催化剂性能均优于ZnO和g-C3N4样品。此外, 当ZnO和g-C3N4的摩尔比为1∶1时, 所制备ZnO/g-C3N4复合样品的光催化性能最好。一方面, 此样品仅在30 min后便达到了94.36%的降解率, 其降解速率分别是ZnO和g-C3N4的5.6和6.7倍; 另一方面, 此样品6 h光解水产氢量为11.75 mmol, 产氢速率是g-C3N4的7倍。研究表明, 所制备的ZnO/g-C3N4系列复合光催化剂在降解污染物和光解水产氢方面均展现出了优异的性能。同时, 本文还对ZnO/g-C3N4系列复合光催化剂的光催化降解和产氢机理进行了研究。
ZnO/g-C3N4复合光催化剂 水热法 光降解 光解水产氢 活性自由基 ZnO/g-C3N4 composite photocatalyst hydrothermal method photodegradation photolysis aquatic hydrogen active free radical 
人工晶体学报
2023, 52(11): 2057
作者单位
摘要
1 江苏旅游职业学院,扬州 225000
2 盐城工学院化学化工学院,盐城 224051
光催化技术在太阳能资源利用方面呈现出良好的应用前景,已受到世界各国的广泛关注。g-C3N4是一种二维结构的非金属聚合物型半导体材料,具有合成简单、成本低、化学性质稳定、无毒等特点,在环境修复和能量转化方面应用潜力较大。但g-C3N4存在对可见光吸收能力差、比表面积小和光生载流子复合速率高等缺点,限制了其实际应用。构筑异质结光催化剂是提高光催化效率的有效途径之一。基于Ag基材料的特点,前人对g-C3N4/Ag基二元复合光催化剂进行了大量研究, 并取得显著成果。本文总结了近年来AgX(X=Cl,Br,I)/g-C3N4、Ag3PO4/g-C3N4、Ag2CO3/g-C3N4、Ag3VO4/g-C3N4、Ag2CrO4/g-C3N4、Ag2O/g-C3N4和Ag2MoO4/g-C3N4复合光催化剂降解环境污染物的研究进展,并评述了g-C3N4/Ag基二元复合光催化剂目前面临的主要挑战,展望了其未来发展趋势。
Ag基材料 二元复合光催化剂 光催化性能 环境污染物 g-C3N4 g-C3N4 Ag-based material binary composite photocatalyst photocatalytic performance environmental pollutant 
硅酸盐通报
2023, 42(10): 3755
Jie Li 1,2†Kaige Huang 3,4,5†Yanbin Huang 2,*Yumin Ye 6[ ... ]Zhanguo Wang 3,4,5
Author Affiliations
Abstract
1 College of Mechanical and Electrical Engineering, Handan University, Handan 056005, China
2 Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038, China
3 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
6 Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
7 Faculty of Physics, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
8 Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
Developing low-cost, efficient, and stable photocatalysts is one of the most promising methods for large-scale solar water splitting. As a metal-free semiconductor material with suitable band gap, graphitic carbon nitride (g-C3N4) has attracted attention in the field of photocatalysis, which is mainly attributed to its fascinating physicochemical and photoelectronic properties. However, several inherent limitations and shortcomings—involving high recombination rate of photocarriers, insufficient reaction kinetics, and optical absorption—impede the practical applicability of g-C3N4. As an effective strategy, vacancy defect engineering has been widely used for breaking through the current limitations, considering its ability to optimize the electronic structure and surface morphology of g-C3N4 to obtain the desired photocatalytic activity. This review summarizes the recent progress of vacancy defect engineered g-C3N4 for solar water splitting. The fundamentals of solar water splitting with g-C3N4 are discussed first. We then focus on the fabrication strategies and effect of vacancy generated in g-C3N4. The advances of vacancy-modified g-C3N4 photocatalysts toward solar water splitting are discussed next. Finally, the current challenges and future opportunities of vacancy-modified g-C3N4 are summarized. This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C3N4.
g-C3N4 vacancy defect water splitting photocatalyst charge carrier 
Journal of Semiconductors
2023, 44(8): 081701
作者单位
摘要
大连民族大学环境与资源学院, 大连 116600
本文分别采用热缩聚法和水热法合成了g-C3N4和In2S3, 再用简单的机械研磨工艺制备出了In2S3/g-C3N4复合光催化剂。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)和紫外可见漫反射光谱(UV-Vis DRS)对In2S3/g-C3N4复合光催化剂的晶体结构、形貌、微观结构和光学性质进行了表征,在可见光照射下, 通过降解四环素(TC)来评价其光催化活性。结果表明, 研磨比例为1∶4(摩尔比)的In2S3/g-C3N4复合光催化剂表现出最佳的光催化性能, 在氙灯下TC的光降解表观速率常数是0.025 1 min-1, 分别是In2S3和g-C3N4的2.9倍和1.6倍, 在自然光下TC的光降解表观速率常数是0.010 4 min-1, 分别是In2S3和g-C3N4的2.6倍和1.4倍。In2S3/g-C3N4复合光催化剂优异的光催化性能归功于载流子的高效迁移和分离以及增强的光吸收能力。本研究为设计和开发用于抗生素废水处理的可见光响应光催化剂提供了一条有前景的途径。
In2S3/g-C3N4复合光催化剂 机械研磨 四环素 光催化 In2S3/g-C3N4 composite photocatalyst mechanical grinding tetracycline photocatalysis In2S3 In2S3 g-C3N4 g-C3N4 
硅酸盐通报
2023, 42(1): 310
Author Affiliations
Abstract
1 School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
2 Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
3 Key Laboratory of MicroNano Powder and Advanced Energy Materials of Anhui Higher Education Institute, School of Chemistry and Materials Engineering, Chizhou University, Chizhou 247000, China
In recent years, Janus two-dimensional (2D) materials have received extensive research interests because of their outstanding electronic, mechanical, electromechanical, and optoelectronic properties. In this work, we explore the structural, electromechanical, and optoelectronic properties of a novel hypothesized Janus InGaSSe monolayer by means of first-principles calculations. It is confirmed that the Janus InGaSSe monolayer indeed show extraordinary charge transport properties with intrinsic electron mobility of 48 139 cm2/(V·s) and hole mobility of 16 311 cm2/(V·s). Both uniaxial and biaxial strains can effectively tune its electronic property. Moreover, the Janus InGaSSe monolayer possesses excellent piezoelectric property along both in-plane and out-of-plane directions. The results of this work imply that the Janus InGaSSe monolayer is in fact an efficient photocatalyst candidate, and may provide useful guidelines for the discovery of other new 2D photocatalytic and piezoelectric materials.In recent years, Janus two-dimensional (2D) materials have received extensive research interests because of their outstanding electronic, mechanical, electromechanical, and optoelectronic properties. In this work, we explore the structural, electromechanical, and optoelectronic properties of a novel hypothesized Janus InGaSSe monolayer by means of first-principles calculations. It is confirmed that the Janus InGaSSe monolayer indeed show extraordinary charge transport properties with intrinsic electron mobility of 48 139 cm2/(V·s) and hole mobility of 16 311 cm2/(V·s). Both uniaxial and biaxial strains can effectively tune its electronic property. Moreover, the Janus InGaSSe monolayer possesses excellent piezoelectric property along both in-plane and out-of-plane directions. The results of this work imply that the Janus InGaSSe monolayer is in fact an efficient photocatalyst candidate, and may provide useful guidelines for the discovery of other new 2D photocatalytic and piezoelectric materials.
Janus InGaSSe monolayer semiconducting photocatalyst piezoelectricity 
Journal of Semiconductors
2023, 44(1): 012701
焦永欣 1,*王姝 1,2殷佳楠 1孙宇 1[ ... ]刘玉普 1
作者单位
摘要
1 哈尔滨理工大学理学院,哈尔滨 150080
2 佛山(华南)新材料研究院,广东 佛山 528200
开发利用太阳能解决日益严重的环境危机迫在眉睫,为了提高对太阳光的利用率和光催化剂的性能,采用原位生长并结合表面静电吸附的方法制备三元复合材料,先利用水热合成MoS2/RGO二元异质结复合材料,再根据材料等电点调变溶液pH值制造MoS2与Fe2O3表面电荷同性、而与RGO表面电荷异性,进而构筑MoS2/RGO/Fe2O3全固态Z-Scheme光催化剂。通过扫描电镜和透射电子显微镜观察发现,MoS2纳米花球和Fe2O3纳米颗粒均匀分布在二维片层结构的电子介体RGO表面,MoS2和Fe2O3分别与RGO形成稳定的异质结构,充分证明此种方式构建复杂三元复合材料的可行性。RGO基全固态Z-Scheme光催化剂在模拟太阳光照射下具有优异的光催化还原降解性能,以无机重金属Cr (VI)溶液作为降解指示剂,60min内全固态Z-Scheme光催化剂中活性最佳的为MR0.43F试样,其光还原降解效率是二元复合材料MoS2/RGO的1.5倍。这种全固态Z-Scheme光催化剂兼具宽光谱吸收、高效光生载流子分离效率和表面化学反应效率,改性后的光催化性能得到显著提升,这一光催化设计路线为水环境处理及清洁能源制备提供了新方向。
还原氧化石墨烯 二硫化钼 三氧化二铁 光催化 reduced graphene oxide molybdenum disulfide ferric oxide photocatalyst 
硅酸盐学报
2022, 50(5): 1263
作者单位
摘要
太原理工大学化学工程与技术学院,太原 030024
BixOyBrz光催化剂在有机药物废水处理领域有着非常广阔的潜在应用价值,但光生电子-空穴对的快速复合限制了其应用。本文选用具有优良电子传递性能的Ti3C2作为助催化剂,首先利用Ti3C2表面丰富的Ti空位缺陷和高还原能力,制备了Ti3C2-Ru助催化剂,接着利用Ti3C2表面官能团与Bi3+的离子键合力实现了Bi4O5Br2在Ti3C2-Ru表面的原位生长,得到Bi4O5Br2/Ti3C2-Ru复合光催化剂,从而实现了电子由Bi4O5Br2到Ti3C2再到反应活性位点Ru的定向传递,最终使催化剂具有较高的光生载流子分离率和较低的界面电荷转移阻力,有效抑制了光生电子-空穴对的复合。同时以磺胺甲噁唑(SMX)为模拟药物污染物进行了光催化性能测试,结果表明所制备的Bi4O5Br2/Ti3C2-Ru复合光催化剂展示出了优异的光催化降解SMX性能,在可见光下照射75 min,SMX的降解率达到95.1%,相较于纯的Bi4O5Br2和Bi4O5Br2/Ti3C2催化剂,其降解率分别提升了36.9个百分点和25.3个百分点。最后基于自由基捕获实验和催化剂能带结构分析提出了所制催化剂的降解机理。研究结果可为构建具有药物废水净化功能的光催化剂提供设计思路。
复合光催化剂 磺胺甲噁唑 电子-空穴-分离效率 电子定向转移 光催化降解 Bi4O5Br2/Ti3C2-Ru Bi4O5Br2/Ti3C2-Ru composite photocatalyst sulfamethoxazole separation efficiency of electron-hole pair electron directional transfer photocatalytic degradation 
人工晶体学报
2022, 51(7): 1248
作者单位
摘要
中国石油大学(华东) 化学工程学院, 重质油国家重点实验室, 青岛 266580

光催化降解技术能够高效去除废水中的有机污染物, 具有广阔的应用前景。本研究以海藻为碳源, 采用微波水热法制备海藻基碳量子点(CDs), 并进一步合成CDs-Cu-TiO2复合材料作为可见光催化剂用于污染物降解。结果表明, 复合材料中CDs、Cu2+与TiO2紧密结合在一起, 可见光区吸收明显增强, 荧光发射效率降低。CDs与Cu2+的引入产生协同效应, 使复合材料的禁带宽度降低到2.35 eV, 并有效抑制了电子-空穴的复合。以罗丹明B为污染物模型的光催化性能实验显示, 海藻基CDs-Cu-TiO2复合材料在可见光照射下降解RhB的一级反应速率常数能够达到纯TiO2纳米颗粒的6.4倍, 150 min降解率接近100%, 是TiO2纳米颗粒的2倍。

CDs-Cu-TiO2 复合光催化剂 光催化降解 染料废水 CDs-Cu-TiO2 composite photocatalyst photocatalytic degradation dye wastewater 
无机材料学报
2021, 36(11): 1154
作者单位
摘要
湖北大学 物理与电子科学学院, 铁电压电湖北省重点实验室, 武汉 430062

光催化技术以其高效、安全、低成本的优势, 被广泛研究用于去除污水中有毒副作用的重金属Cr(VI)。制备半导体复合材料是一种可以有效提高半导体光催化性能的途径。本研究通过简单的水热法合成了CuS纳米片修饰的Bi5O7I复合材料, 并且表征和评估了其在可见光下对Cr(VI)的光催化还原活性。与纯Bi5O7I微米棒及纯CuS样品相比, CuS/Bi5O7I复合催化剂对Cr(VI)水溶液具有更高的光催化降解活性。在相同的可见光辐照条件下, 15wt% CuS修饰的复合样品, 光催化降解Cr(VI)的反应常数是纯/Bi5O7I样品的20倍, 纯CuS样品的4.3倍。对比样品的比表面积、光致发光谱和电化学阻抗谱的测试结果发现, 复合样品表现出更高的催化效率是由于CuS/Bi5O7I具有更大的比表面积、更宽的光吸收区域及更高的光生电子-空穴对的分离和传输效率。本研究还提出了CuS/Bi5O7I复合材料光催化降解Cr(VI)的机理。

CuS/Bi5O7I复合光催化剂 可见光催化剂 光催化降解Cr(VI) CuS/Bi5O7I composite photocatalyst visible-light photocatalyst photocatalytic reduction of Cr(VI) 
无机材料学报
2021, 36(6): 665
李瑞 1,2张潇 1张璐璐 2谢芳霞 2[ ... ]樊彩梅 1,2
作者单位
摘要
1 太原理工大学环境科学与工程学院,太原 030024
2 太原理工大学化学化工学院,太原 030024
BixOyBrz光催化剂在有机药物废水处理领域有着非常广阔的潜在应用价值,但因光生电子和空穴的快速复合而表现出较低的光催化效率,进而限制了其应用范围。通过简易的水解-焙烧法原位制得一种新型的Bi3O4Br/Bi12O17Br2复合光催化剂,并以磺胺甲噁唑(SMX)为模拟药物污染物进行了光催化性能测试,对所制催化剂进行了X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis DRS)、电化学阻抗(EIS)、光致发光光谱(PL)等表征。结果表明所制备的Bi3O4Br/Bi12O17Br2复合光催化剂具有较强的光生载流子分离率、较低的界面电荷转移电阻,进而展示出优异的光催化降解SMX性能,在模拟太阳光下照射30 min,SMX降解率达到87%,相较于纯的Bi3O4Br和Bi12O17Br2催化剂,降解率分别提升了30%和24%。最后基于自由基捕获实验和催化剂能带结构分析了所制催化剂的降解机理。
BixOyBrz光催化剂 复合光催化剂 原位合成 降解 光催化性能 水解-焙烧法 磺胺甲噁唑 BixOyBrz photocatalyst composite photocatalyst in-situ synthesis degradation photocatalytic performance hydrolysis-calcination route sulfamethoxazole 
人工晶体学报
2021, 50(9): 1735

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!