Jie Li 1,2†Kaige Huang 3,4,5†Yanbin Huang 2,*Yumin Ye 6[ ... ]Zhanguo Wang 3,4,5
Author Affiliations
Abstract
1 College of Mechanical and Electrical Engineering, Handan University, Handan 056005, China
2 Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038, China
3 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
6 Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
7 Faculty of Physics, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
8 Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
Developing low-cost, efficient, and stable photocatalysts is one of the most promising methods for large-scale solar water splitting. As a metal-free semiconductor material with suitable band gap, graphitic carbon nitride (g-C3N4) has attracted attention in the field of photocatalysis, which is mainly attributed to its fascinating physicochemical and photoelectronic properties. However, several inherent limitations and shortcomings—involving high recombination rate of photocarriers, insufficient reaction kinetics, and optical absorption—impede the practical applicability of g-C3N4. As an effective strategy, vacancy defect engineering has been widely used for breaking through the current limitations, considering its ability to optimize the electronic structure and surface morphology of g-C3N4 to obtain the desired photocatalytic activity. This review summarizes the recent progress of vacancy defect engineered g-C3N4 for solar water splitting. The fundamentals of solar water splitting with g-C3N4 are discussed first. We then focus on the fabrication strategies and effect of vacancy generated in g-C3N4. The advances of vacancy-modified g-C3N4 photocatalysts toward solar water splitting are discussed next. Finally, the current challenges and future opportunities of vacancy-modified g-C3N4 are summarized. This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C3N4.
g-C3N4 vacancy defect water splitting photocatalyst charge carrier 
Journal of Semiconductors
2023, 44(8): 081701
Author Affiliations
Abstract
1 Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Herakleio 70013, Greece
2 Electrical and Computer Engineering Department, Hellenic Mediterranean University, Herakleio 71004, Greece
3 Department of Materials Science and Technology, University of Crete, Herakleio 70013, Greece
4 Department of Physics, University of Crete, Herakleio 70013, Greece
Despite that organic-inorganic lead halide perovskites have attracted enormous scientific attention for energy conversion applications over the recent years, the influence of temperature and the type of the employed hole transport layer (HTL) on the charge carrier dynamics and recombination processes in perovskite photovoltaic devices is still largely unexplored. In particular, significant knowledge is missing on how these crucial parameters for radiative and non-radiative recombinations, as well as for efficient charge extraction vary among different perovskite crystalline phases that are induced by temperature variation. Herein, we perform micro photoluminescence (μPL) and ultrafast time resolved transient absorption spectroscopy (TAS) in Glass/Perovskite and two different Glass/ITO/HTL/Perovskite configurations at temperatures below room temperature, in order to probe the charge carrier dynamics of different perovskite crystalline phases, while considering also the effect of the employed HTL polymer. Namely, CH3NH3PbI3 films were deposited on Glass, PEDOT:PSS and PTAA polymers, and the developed Glass/CH3NH3PbI3 and Glass/ITO/HTL/CH3NH3PbI3 architectures were studied from 85 K up to 215 K in order to explore the charge extraction dynamics of the CH3NH3PbI3 orthorhombic and tetragonal crystalline phases. It is observed an unusual blueshift of the bandgap with temperature and the dual emission at temperature below of 100 K and also, that the charge carrier dynamics, as expressed by hole injection times and free carrier recombination rates, are strongly depended on the actual pervoskite crystal phase, as well as, from the selected hole transport material.Despite that organic-inorganic lead halide perovskites have attracted enormous scientific attention for energy conversion applications over the recent years, the influence of temperature and the type of the employed hole transport layer (HTL) on the charge carrier dynamics and recombination processes in perovskite photovoltaic devices is still largely unexplored. In particular, significant knowledge is missing on how these crucial parameters for radiative and non-radiative recombinations, as well as for efficient charge extraction vary among different perovskite crystalline phases that are induced by temperature variation. Herein, we perform micro photoluminescence (μPL) and ultrafast time resolved transient absorption spectroscopy (TAS) in Glass/Perovskite and two different Glass/ITO/HTL/Perovskite configurations at temperatures below room temperature, in order to probe the charge carrier dynamics of different perovskite crystalline phases, while considering also the effect of the employed HTL polymer. Namely, CH3NH3PbI3 films were deposited on Glass, PEDOT:PSS and PTAA polymers, and the developed Glass/CH3NH3PbI3 and Glass/ITO/HTL/CH3NH3PbI3 architectures were studied from 85 K up to 215 K in order to explore the charge extraction dynamics of the CH3NH3PbI3 orthorhombic and tetragonal crystalline phases. It is observed an unusual blueshift of the bandgap with temperature and the dual emission at temperature below of 100 K and also, that the charge carrier dynamics, as expressed by hole injection times and free carrier recombination rates, are strongly depended on the actual pervoskite crystal phase, as well as, from the selected hole transport material.
transient absorption spectroscopy μ-photoluminescence variable temperature perovskite crystalline phases hole transport layer charge carrier dynamics 
Opto-Electronic Science
2022, 1(4): 210005
作者单位
摘要
北京印刷学院 印刷与包装工程学院, 北京 102600
有机光电材料大致可分为小分子或低聚物和聚合物两类。载流子迁移率是衡量有机光电材料导电性能的重要参数, 直接关系到材料对电荷的传输能力。因此, 测量材料的载流子迁移率是研究有机光电材料的基本工作之一。通过对几种不同测试方法的总结与分析, 报道了几种载流子迁移率测试技术, 并指出各种测试方法的应用原理及适用的测试范围, 对采用合理的手段研究考察载流子在有机光电材料及器件中的传输特性及其对有机光电器件的性能影响有重要的意义。
载流子迁移率 有机光电材料与器件 测量方法 charge carrier mobility organic optoelectronic materials and devices measurement method 
光电技术应用
2021, 36(1): 64
崔东岳 1,2,*王帅 1,2李淑红 1,2刘云龙 1,2王文军 1,2
作者单位
摘要
1 聊城大学 物理科学与信息工程学院, 山东 聊城 252059
2 山东省光通信科学与技术重点实验室, 山东 聊城 252059
有机发光二极管(OLED)器件性能的提高一直是有机电致发光领域备受关注的研究课题之一, 通过优化OLED器件中的载流子平衡是提高OLED器件性能的一个非常重要的手段。但是, 调控空穴传输层或电子传输层中的分子取向, 从而优化器件中的载流子平衡未被关注。本文通过对空穴传输层进行不同温度的退火处理来改变空穴传输层中的分子取向, 研究分子取向对其空穴迁移率和OLED器件性能的影响。研究发现, 退火温度的升高使得空穴传输层中具有垂直取向的分子的比例增加, 促进了空穴迁移率的提高。当把具有不同分子取向的空穴传输层应用于OLED器件时, 可以清楚地观察到载流子平衡因子对器件性能的影响。
有机发光二极管 载流子平衡 单空穴器件 分子取向 organic light-emitting diodes(OLED) charge carrier balance hole-only device molecular orientation 
发光学报
2021, 42(5): 691
Author Affiliations
Abstract
1 Joint International Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
2 Chemistry Department, North West University, Mafikeng, South Africa
3 Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518000, China
Optoelectronic applications based on the perovskites always face challenges due to the inherent chemical composition volatility of perovskite precursors. The efficiency of perovskite-based light-emitting diodes (Pe-LEDs) can be enhanced by improving the perovskite film via solvent engineering. A dual solvent post-treatment strategy was applied to the perovskite film, which provides a synchronous effect of passivating surface imperfections and reduces exciton quenching, as evidenced by improved surface morphology and photoluminance. Thus, the optimized Pe-LEDs reach 17,866 cd·m-2 maximum brightness, 45.8 cd·A-1 current efficiency, 8.3% external quantum efficiency, and relatively low turn-on voltage of 2.0 V. Herein, we present a simple technique for the fabrication of stable and efficient Pe-LEDs.
CsPbBr3 light-emitting diode solvent treatment charge-carrier injection perovskite LED 
Chinese Optics Letters
2021, 19(3): 030005
作者单位
摘要
上海交通大学 电子工程系TFT-LCD关键材料及技术国家工程实验室, 上海 200240
文章采用具有电子捕捉能力的橙红色磷光材料iridium(Ⅲ)bis(2-methyldibenzo-[f,h]quinoxaline)(acetylacetonate)(Ir(MDQ)2(acac))作为超薄发光层应用于有机发光二极管中。通过对其厚度的优化, 发现当发光层厚度为0.1 nm时, 器件性能最好, 最大电流效率达到了28.1 cd/A, 明显优于采用掺杂发光层的器件。分析了发光材料的载流子捕捉作用对器件载流子平衡及器件电流效率的影响, 发现超薄发光层结构几乎不改变器件的电学特性, 不会进一步破坏器件载流子平衡, 正因如此, 大多数磷光材料都可以采用超薄发光层获得很高的效率。
有机发光二极管 超薄发光层 载流子捕捉 电流效率 OLED ultrathin non-doped EML charge-carrier trapping current efficiency 
半导体光电
2017, 38(6): 775
作者单位
摘要
1 光电信息控制和安全技术重点实验室, 三河 065201
2 第二炮兵驻锦州地区专用保障装备军事代表室, 锦州 121000
为了精确测定弱电导材料中载流子迁移率, 采用渡越时间方法测量了8-羟基喹啉配合物(Alq3)的载流子迁移率, 对渡越时间方法需要的实验条件进行了理论分析和实验验证, 讨论了激发光源的波长、单脉冲能量以及测量电路的积分时间常数的选取对材料载流子迁移率测量结果的影响。结果表明, 采用渡越时间方法测量弱电导半导体材料中载流子迁移率时, 只有严格选取合适的测量条件, 才可能获得准确、可靠的测试结果。此结论有助于对有机电致发光器件载流子迁移率进行精确测定。
光电子学 渡越时间法 载流子 迁移率 弱电导 optoelectronics time of flight method charge carrier mobility weak photoconductor 
激光技术
2014, 38(4): 445
作者单位
摘要
南京理工大学近程高速目标探测技术国防重点学科实验室, 江苏 南京 210094
信号电荷在电荷载流子倍增寄存器中的强场下,吸收电场能量激发碰撞电离过程。电子碰撞电离过程激发的电子-空穴对具有独立性和随机性,其激发过程产生的倍增噪声主要是散粒噪声。借助于马尔可夫链定理,得到了CCM单元的倍增因子的计算方法,建立了电子碰撞电离的数学模型。在此基础上,推导了CCM单元倍增噪声的功率谱密度,表明其与倍增因子相关。
电荷载流子倍增寄存器 碰撞电离 倍增因子 倍增噪声功率谱密度 charge carrier multiplier impact ionization multiplication factor multiplication noise spectral density 
光学与光电技术
2009, 7(1): 88
作者单位
摘要
电子科技大学 光电信息学院,电子薄膜与集成器件国家重点实验室,四川 成都 610054
将腈类黄色荧光染料(2Z,2’Z)-3,3’-(1,4-phenylene)bis(2-phenylacrylonitrile) (BPhAN)掺杂到poly(N-vinylcarbazole) (PVK)中作发光层,2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)作电子传输层和空穴阻挡层,制备了结构为Indium-tin oxide (ITO)/PVK:BPhAN/BCP/Mg:Ag的双层有机电致发光器件。通过调节BPhAN掺杂质量百分比(2wt%,4wt%,6wt%),测试了器件在不同电压下的光谱特性,研究了Frster能量转移和直接载流子俘获在发光过程中的作用。结果表明,当掺杂浓度为4 wt%时可实现色度较好的白光,随着电压从6 V增大到16 V,CIE色坐标从(0.33,0.37)变化到(0.32,0.33),在白光区域有微小蓝移,这是由于随着电压的增大,能量转移效率和直接载流子俘获效率都降低,BPhAN黄光减弱,PVK发射的蓝光增强。
有机电致发光器件 白色发光 BPhAN掺杂体系 光谱特性 能量转移 载流子陷阱 Organic light-emitting diodes White light Blend polymeric system Spectral characteristics Energy transfer Charge carrier trapping 
光谱学与光谱分析
2009, 29(3): 589

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!