Photonics Research, 2021, 9 (1): 01000013, Published Online: Dec. 15, 2020   

Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform Download: 878次Cover paper

Author Affiliations
1 Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
2 Current Address: School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519082, China
Copy Citation Text

Zhengji Xu, Nanxi Li, Yuan Dong, Yuan Hsing Fu, Ting Hu, Qize Zhong, Yanyan Zhou, Dongdong Li, Shiyang Zhu, Navab Singh. Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform[J]. Photonics Research, 2021, 9(1): 01000013.

References

[1] S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, J. K. W. Yang. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett., 2014, 14: 4023-4029.

[2] Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, J. K. W. Yang. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett., 2017, 17: 7620-7628.

[3] J. Xiang, J. Li, Z. Zhou, S. Jiang, J. Chen, Q. Dai, S. Tie, S. Lan, X. Wang. Manipulating the orientations of the electric and magnetic dipoles induced in silicon nanoparticles for multicolor display. Laser Photon. Rev., 2018, 12: 1800032.

[4] S. Yokogawa, S. P. Burgos, H. A. Atwater. Plasmonic color filters for CMOS image sensor applications. Nano Lett., 2012, 12: 4349-4354.

[5] N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater., 2011, 10: 631-636.

[6] A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, N. A. Mortensen. Plasmonic colour generation. Nat. Rev. Mater., 2016, 2: 16088.

[7] M. Ozaki, J. Kato, S. Kawata. Surface-plasmon holography with white-light illumination. Science, 2011, 332: 218-220.

[8] H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo. Photonic color filters integrated with organic solar cells for energy harvesting. ACS Nano, 2011, 5: 7055-7060.

[9] M. J. Vrhel, R. Gershon, L. S. Iwan. Measurement and analysis of object reflectance spectra. Color Res. Appl., 1994, 19: 4-9.

[10] T. Lee, J. Jang, H. Jeong, J. Rho. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg., 2018, 5: 1.

[11] V. R. Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett., 2014, 14: 6672-6678.

[12] T. Xu, Y.-K. Wu, X. Luo, L. J. Guo. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun., 2010, 1: 59.

[13] J. Berzinš, S. Fasold, T. Pertsch, S. M. B. Bäumer, F. Setzpfandt. Submicrometer nanostructure-based RGB filters for CMOS image sensors. ACS Photon., 2019, 6: 1018-1025.

[14] C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, D.-Y. Choi. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci. Rep., 2017, 7: 2556.

[15] W. Sabra, S. I. Azzam, M. Song, M. Povolotskyi, A. H. Aly, A. V. Kildishev. Plasmonic metasurfaces for subtractive color filtering: optimized nonlinear regression models. Opt. Lett., 2018, 43: 4815-4818.

[16] V. R. Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Sci. Rep., 2015, 5: 12450.

[17] Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, C.-W. Qiu. Color generation via subwavelength plasmonic nanostructures. Nanoscale, 2015, 7: 6409-6419.

[18] Y. Gao, C. Huang, C. Hao, S. Sun, L. Zhang, C. Zhang, Z. Duan, K. Wang, Z. Jin, N. Zhang, A. V. Kildishev, C.-W. Qiu, Q. Song, S. Xiao. Lead halide perovskite nanostructures for dynamic color display. ACS Nano, 2018, 12: 8847-8854.

[19] Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C.-W. Qiu, J. K. W. Yang, H. Duan. Stepwise-nanocavity-assisted transmissive color filter array microprints. Research, 2018, 2018: 8109054.

[20] J. Proust, F. Bedu, B. Gallas, I. Ozerov, N. Bonod. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano, 2016, 10: 7761-7767.

[21] J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, L. J. Guo. Visualizing Mie resonances in low-index dielectric nanoparticles. Phys. Rev. Lett., 2018, 120: 253902.

[22] C. Zhang, Y. Xu, J. Liu, J. Li, J. Xiang, H. Li, J. Li, Q. Dai, S. Lan, A. E. Miroshnichenko. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun., 2018, 9: 2964.

[23] E. S. Magden, N. Li, M. Raval, C. V. Poulton, A. Ruocco, N. Singh, D. Vermeulen, E. P. Ippen, L. A. Kolodziejski, M. R. Watts. Transmissive silicon photonic dichroic filters with spectrally selective waveguides. Nat. Commun., 2018, 9: 3009.

[24] , N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, M. R. Watts. Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform. Opt. Lett., 2017, 42: 1772-1775.

[25] N. Li, Z. Su, , E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, M. R. Watts. Athermal synchronization of laser source with WDM filter in a silicon photonics platform. Appl. Phys. Lett., 2017, 110: 211105.

[26] H. Yuan, J. Tao, N. Li, A. Karmakar, C. Tang, H. Cai, S. J. Pennycook, N. Singh, D. Zhao. On-chip tailorability of capacitive gas sensors integrated with metal–organic framework films. Angew. Chem. (Int. Ed.), 2019, 58: 14089-14094.

[27] N. Li, H. Yuan, L. Xu, J. Tao, D. K. T. Ng, L. Y. T. Lee, D. D. Cheam, Y. Zeng, B. Qiang, Q. Wang, H. Cai, N. Singh, D. Zhao. Radiation enhancement by graphene oxide on microelectromechanical system emitters for highly selective gas sensing. ACS Sens., 2019, 4: 2746-2753.

[28] H. Yuan, N. Li, J. Linghu, J. Dong, Y. Wang, A. Karmakar, J. Yuan, M. Li, P. J. S. Buenconsejo, G. Liu, H. Cai, S. J. Pennycook, N. Singh, D. Zhao. Chip-level integration of covalent organic frameworks for trace benzene sensing. ACS Sens., 2020, 5: 1474-1481.

[29] M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts, F. X. Kärtner. Optical frequency synthesizer with an integrated erbium tunable laser. Light Sci. Appl., 2019, 8: 122.

[30] N. Singh, M. Xin, N. Li, D. Vermeulen, A. Ruocco, E. S. Magden, K. Shtyrkova, E. Ippen, F. X. Kärtner, M. R. Watts. Silicon photonics optical frequency synthesizer. Laser Photon. Rev., 2020, 14: 1900449.

[31] J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magden, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf, M. R. Watts. CMOS-compatible optical phased array powered by a monolithically-integrated erbium laser. J. Lightwave Technol., 2019, 37: 5982-5987.

[32] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, M. R. Watts. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett., 2017, 42: 21-24.

[33] NotarosJ.NotarosM.RavalM.PoultonC. V.ByrdM. J.LiN.SuZ.MagdenE. S.TimurdoganE.DyerT.BaioccoC.KimT.BhargavaP.StojanovicV.WattsM. R., “Integrated optical phased arrays: LiDAR, augmented reality, and beyond,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED), OSA Technical Digest (Optical Society of America, 2019), paper IM4A.2.

[34] J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, F. Capasso. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett., 2019, 19: 8673-8682.

[35] Y. Dong, Z. Xu, N. Li, J. Tong, Y. H. Fu, Y. Zhou, T. Hu, Q. Zhong, V. Bliznetsov, S. Zhu. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform. Nanophotonics, 2019, 9: 149-157.

[36] Z. Xu, Y. Dong, C.-K. Tseng, T. Hu, J. Tong, Q. Zhong, N. Li, L. Sim, K. H. Lai, Y. Lin, D. Li, Y. Li, V. Bliznetsov, Y.-H. Fu, S. Zhu, Q. Lin, D. H. Zhang, Y. Gu, N. Singh, D.-L. Kwong. CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers. Opt. Express, 2019, 27: 26060-26069.

[37] A. She, S. Zhang, S. Shian, D. R. Clarke, F. Capasso. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express, 2018, 26: 1573-1585.

[38] T. Hu, Q. Zhong, N. Li, Y. Dong, Z. Xu, Y. H. Fu, D. Li, V. Bliznetsov, Y. Zhou, K. H. Lai, Q. Lin, S. Zhu, N. Singh. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics, 2020, 9: 823-830.

[39] S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, F. Capasso. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt. Express, 2016, 24: 18024-18034.

[40] HuT.ZhongQ.LiN.DongY.XuZ.LiD.FuY. H.ZhouY.LaiK. H.BliznetsovV.LeeH.-J.LohW. L.ZhuS.LinQ.SinghN., “A metalens array on a 12-inch glass wafer for optical dot projection,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2020), paper W4C.3.

[41] ZhongQ.DongY.LiD.LiN.HuT.XuZ.ZhouY.LaiK. H.FuY. H.BliznetsovV.LeeH.-J.LohW. L.ZhuS.LinQ.SinghN., “Large-area metalens directly patterned on a 12-inch glass wafer using immersion lithography for mass production,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2020), paper Th2A.8.

[42] N. Li, H. Y. Fu, Y. Dong, T. Hu, Z. Xu, Q. Zhong, D. Li, K. H. Lai, S. Zhu, Q. Lin, Y. Gu, N. Singh. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation. Nanophotonics, 2019, 8: 1855-1861.

[43] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391: 667-669.

[44] F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski, X. Yang. Aluminum plasmonic metamaterials for structural color printing. Opt. Express, 2015, 23: 14552-14560.

[45] M. Miyata, H. Hatada, J. Takahara. Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett., 2016, 16: 3166-3172.

[46] T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, Y. Gu. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express, 2018, 26: 19548-19554.

[47] B. Zeng, Y. Gao, F. J. Bartoli. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci. Rep., 2013, 3: 2840.

[48] W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, D.-Y. Choi. Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity. Sci. Rep., 2016, 6: 29756.

[49] I. Koirala, S.-S. Lee, D.-Y. Choi. Highly transmissive subtractive color filters based on an all-dielectric metasurface incorporating TiO2 nanopillars. Opt. Express, 2018, 26: 18320-18330.

[50] W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, D.-Y. Choi. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors. Laser Photon. Rev., 2017, 11: 1600285.

[51] D. D. Ordinario, H. Jinno, M. O. G. Nayeem, Y. Tachibana, T. Yokota, T. Someya. Stretchable structural color filters based on a metal-insulator–metal structure. Adv. Opt. Mater., 2018, 6: 1800851.

[52] Y.-T. Yoon, C.-H. Park, S.-S. Lee. Highly efficient color filter incorporating a thin metal-dielectric resonant structure. Appl. Phys. Express, 2012, 5: 022501.

[53] A. F. Kaplan, T. Xu, L. J. Guo. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl. Phys. Lett., 2011, 99: 143111.

[54] K.-T. Lee, S. Seo, L. J. Guo. High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers. Adv. Opt. Mater., 2015, 3: 347-352.

[55] N. Li, Z. Xu, Y. Dong, T. Hu, Q. Zhong, Y. H. Fu, S. Zhu, N. Singh. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics, 2020, 9: 3071-3087.

Zhengji Xu, Nanxi Li, Yuan Dong, Yuan Hsing Fu, Ting Hu, Qize Zhong, Yanyan Zhou, Dongdong Li, Shiyang Zhu, Navab Singh. Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform[J]. Photonics Research, 2021, 9(1): 01000013.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!