中国光学, 2018, 11 (4): 662, 网络出版: 2018-07-30   

PbSe量子点近红外光源的CH4气体检测

CH4 detection based on near-infrared luminescence of PbSe quantum dots
作者单位
长春大学 电子信息工程学院, 吉林 长春 130012
摘要
研制了一种新型的PbSe量子点近红外光源,其光致发光谱较窄,能有效匹配气体的红外吸收峰。采用配位溶剂法合成出51 nm的PbSe量子点,并将其沉积到GaN芯片上(沉积厚度为1655 μm),经过紫外光照处理和固化后制成了光致发光的近红外光源。该光源第一激子吸收峰位于1 592 nm,光致发光峰位于1 665 nm,其发射光谱包含了1 625~1 840 nm之间的CH4气体的全部的吸收谱。利用其进行CH4气体浓度检测实验,结果表明,系统的检测下限可以达到100×10-6,检测误差为2%。这种由PbSe量子点近红外光源构成的新型检测系统具有低功耗、低成本和高效能等优点,将其应用在气体检测中时可以略去滤光片,其在红外气体检测领域中有着较广阔的应用前景。
Abstract
In this paper, a new type of near-infrared light source of PbSe quantum dots(QDs) is introduced. Its photoluminescence(PL) spectrum is narrow which effectively match the infrared absorption peak of targets gases. The 51 nm PbSe quantum dots are synthesized by using the coordination solvent method and deposited on the GaN chip(with a deposition thickness of 1655 μm), then a photoluminescent near-infrared light source is fabricated after ultraviolet light treatment and curing. The first exciton absorption peak of the light source is located at 1 592 nm, the photoluminescence peak is located at 1 665 nm, and its emission spectrum contains the entire absorption spectrum of CH4 gas between 1 625-1 840 nm. The CH4 gas concentration detection experiment is carried out using this light source. The results show that the lowest detection limit of 100×10-6 and the detection error of 2% can be obtained. The new detection system composed of PbSe quantum dots near-infrared light source has the advantages of low power consumption, low cost and high efficiency. When it is used in gas detection, the filter can be omitted, and it has a broad application prospect in the field of infrared gas detection.
参考文献

[1] SUN L F,CHOI J J,STACHNIK D,et al.. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nature Nanotechnol,2012,7(6): 369-373.

[2] DAI X,ZHANG Z,JIN Y,et al.. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature,2014,515(7525): 96-99.

[3] MA W,SWISHER S L,EWERS T,et al.. Photovoltaic performance of ultrasmall PbSe quantum dots[J]. ACS Nano,2011,5(10): 8140-8147.

[4] CAI W B,SHIN D W,CHEN K,et al.. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects[J]. Nano Lett.,2006,6(4): 669-676.

[5] KIM G H,GARCA DE ARQUER F P,YOON Y J,et al.. High-efficiency colloidal quantum dot photovoltaics via robustself-assembled monolayers[J]. Nano Lett.,2015,15(11): 7691-7696.

[6] 李红博,尹坤.基于量子点的荧光型太阳能聚光器[J].中国光学,2017,10(5): 555-567.

    LI H B,YIN K. Quantum dots based luminescent solar concentrator[J]. Chinese Optics,2017,10(5): 555-567.(in Chinese)

[7] 李正顺,岳圆圆,张艳霞,等.丁胺包裹的CdSe量子点敏化的TiO2纳米晶薄膜电子转移机制[J].中国光学,2015,8(3): 428-438.

    LI ZH SH,YUE Y Y,ZHANG Y X,et al.. Electron transfer mechanism of butylamine-capped CdSe quantum dot sensitized nanocrystalline TiO2 films[J]. Chinese Optics,2015,8(3): 428-438.(in Chinese)

[8] 季洪雷,周青超,潘俊,等.量子点液晶显示背光技术[J].中国光学,2017,10(5): 666-680.

    JI H L,ZHOU Q CH,PAN J,et al.. Advances and prospects in quantum dots based backlights[J]. Chinese Optics,2017,10(5): 666-680.(in Chinese)

[9] PENG X G,MANNA L,YANG W D,et al.. Shape control of CdSe nanocrystals[J]. Nature,2000,404: 59-61.

[10] HU J T,ODOM T W,LIEBER C M,et al.. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Acc Chem. Res.,1999,32(5): 435-445.

[11] YU WW,PENG X G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[J]. Angew. Chem. Int. Ed.,2002,41(13): 2368-2371.

[12] ZHANG Y,ICHIHASHI T,LANDREE E,et al.. Heterostructures of single-walled carbon nanotubes and carbide nanorods[J]. Science,1999,285(5434): 1719-722.

[13] YAN L,ZHANG Y,ZHANG T Q,et al.. Tunable near-infrared luminescence of PbSe quantum dots for multigas analysis[J] Anal. Chem.,2014,86(22): 11312-11318.

[14] 邢笑雪,秦宏伍,商微微.PbSe量子点荧光匹配气体吸收光谱方法研究[J].光谱学与光谱分析,2016,36(11): 3588-3591.

    XING X X,QIN H W,SHANG W W. Research of spectrum matching method for PbSe quantum dots luminescence spectrum and gas absorption spectrum[J]. Spectroscopy and Spectral Analysis,2016,36(11): 3588-3591.(in Chinese)

[15] YU W W,FALKNER J C,SHIH B S,et al.. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J]. Chem. Mater.,2004,35(43): 39-46.

[16] SONG F,LI G L,SONG N,et al.. Design and implementation of differential mid-infrared carbon monoxide detector[J]. Optoelectronics Letters,2013,9(5): 385-388.

[17] 吕瑞红,宋楠,宋芳,等.基于虚拟信号处理平台的差分式中红外甲烷检测系统[J].光电子激光,2013,24(7): 1350-1356.

    LV R H,SONG N,SONG F,et al.. Differental mid-infrared methane detection system based on virtual signal processing platform[J]. Journal of Optoelectronics Laser,2013,24(7): 1350-1356.(in Chinese)

[18] 逯丹凤,李洋,祁志美.小型水样氨氮自动光学检测装置[J].光学 精密工程,2014,22(10): 2598-2604.

    LU D F,LI Y,QI ZH M. Compact colorimetric sensor for automatic detection of ammonia nitrogen in water[J]. Opt. Precision Eng.,2014,22(10): 2598-2604.(in Chinese)

[19] ZHANG Y,WANG F,ZHAO Y,et al.. Experiment research on ellipsoidal structure methane using the absorption characteristics of 331 μm mid-infrared spectroscopy[J]. Infrared Phys. Tech.,2012,55: 353-356.

[20] 李亚萍,张广军,李庆波,等.空间双光路红外CO2气体传感器及其测量模型[J].光学 精密工程,2009,17(1): 14-19.

    LI Y P,ZHANG G J,LI Q B,et al.. Infrared CO2 gas sensor based on space double beams and its measurement model[J]. Opt. Precision Eng.,2009,17(1): 14-19.(in Chinese)

邢笑雪, 王宪伟, 秦宏伍, 商微微, 马玉静. PbSe量子点近红外光源的CH4气体检测[J]. 中国光学, 2018, 11(4): 662. XING Xiao-xue, WANG Xian-wei, QIN Hong-wu, SHANG Wei-wei, MA Yu-jing. CH4 detection based on near-infrared luminescence of PbSe quantum dots[J]. Chinese Optics, 2018, 11(4): 662.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!