红外与激光工程, 2016, 45 (1): 0118001, 网络出版: 2016-04-05   

γ辐射对光纤色散的影响

Influence of Gamma-ray radiation on optical fiber dispersion
作者单位
西北核技术研究所 激光与物质相互作用国家重点实验室,陕西 西安 710024
摘要
提出了基于能量沉积的γ辐射对光纤折射率的影响分析方法,计算了光纤的色散变量随光纤的V参数、折射率变化,开展了γ辐射对光纤色散影响的测量实验,得到了光纤的色散系数随辐射剂量变化数据。实验及理论计算结果表明:(1) 光纤的色散系数随γ辐射剂量的增加而增大,在一定的剂量(0~500 Gy)范围内,光纤色散增加量呈逐渐饱和趋势;(2) γ辐射导致光纤折射率发生变化,从而引起材料色散的变化,辐射效应中的电子密度增大是折射率改变的主要因素;(3) 辐射感生损耗引起的信号幅度降低要比辐射感生色散引起的脉冲展宽明显,对于暴露在核辐射环境中的长距离光纤,其脉冲信号产生的畸变是两者同时存在并共同作用的结果。
Abstract
The method based on energy deposition to analyze the influence of γ-ray radiation on fiber refractive index was proposed. The fiber dispersion variable which changes with the fiber V parameters and refractive index was analyzed and calculated. The γ radiation effects on fiber dispersion measurement experiments were accomplished, which demonstrates that the γ radiation impact on the presence of fiber dispersion. The fiber dispersion coefficient variation data with radiation dose were obtained. Experimental and theoretical results show that:(1) fiber dispersion coefficient increases with γ radiation dose, within the dose range of(0-500 Gy) fiber dispersion coefficient showed a gradual increase in the amount of saturated trends; (2) changes in the refractive index of the fiber lead to the additional material dispersion. The electron density increases caused by γ radiation is the major factor that results in changes in the refractive index; (3) the decrease of ultra-fast pulsed signal amplitude caused by radiation-induced loss is more significant than pulse broadening caused by radiation-induced dispersion. Both effects exist simultaneously. The pulsed signal distortion is the result of two joint action of especially for long distance optical fiber with nuclear radiation exposure.
参考文献

[1] 廖延彪. 光纤光学[M]. 北京: 清华大学出版社, 2000: 54-91.

    Liao Yanbiao. Fiber Optics[M]. Beijing: Tsinghua University Press, 2000: 54-91. (in Chinese)

[2] 李玉权, 崔敏. 光波导理论与技术[M]. 北京: 人民邮电出版社, 2002: 157-166.

    Li Yuquan, Cui Min. Theory and Technology of Light Waveguide[M]. Beijing: People′s Posts and Telecommunications Press, 2002: 157-166. (in Chinese)

[3] 刘德明, 向清, 黄德修. 光纤光学[M]. 北京: 国防工业出版社, 1995: 122-135.

    Liu Deming, Xiang Qing, Huang Dexiu. Fiber Optics[M]. Beijing: National Defence Industry Press, 1995: 122-135. (in Chinese)

[4] 叶培大, 吴彝尊. 光波导技术基本理论[M]. 北京: 人民邮电出版社, 1984: 165-319.

    Ye Peida, Wu Yizun. Foudation Principle of Lightwave Technology[M]. Beijing: Peple′s Post and Telecommunication Press, 1984: 165-319. (in Chinese)

[5] 梅镇岳. 原子核物理学[M]. 北京: 科学出版社, 1966: 1-36.

    Mei Zhenyue. Nuclear Physics[M]. Beijing: Science Press, 1966: 1-36. (in Chinese)

[6] 复旦大学, 清华大学, 北京大学. 原子核物理实验方法[M]. 北京: 原子能出版社, 1981: 36-72.

    Fudan University, Tsinghua University, Peking University. Nuclear Physics Experimental Methods[M]. Beijing: Atomic Energy Press, 1981: 36-72. (in Chinese)

[7] 李星洪. 辐射防护基础[M]. 北京: 原子能出版社, 1982: 17-27.

    Li Xinghong. Foundation of Radiation Protection[M]. Beijing: Atomic Energy Press, 1982: 17-27. (in Chinese)

[8] Friebele E J, Lyon P B, Blackburn J, et al. Interlaboratory comparison of radiation-induced attenuation in optical fibers. Part Ш: Transient exposures[J]. Journal of Lightwave Technology, 1990, 8(6): 977-989.

[9] Girard S, Keurinck J, Ouerdane Y, et al. γ-ray and pulsed X-ray radiation responses of germanosilicate single-mode optical fibers: influence of cladding co-dopants[J]. Journal of Lightwave Technology, 2004, 22(8): 1915-1922.

[10] 王学勤, 张春熹, 金靖, 等. 空间用特种光纤的辐射致衰减效应[J]. 红外与激光工程, 2011, 40(12): 2516-2520.

    Wang Xueqin, Zhang Chunxi, Jin Jing, et al. Radiation-induced attenuation effect on special optical fibers applied in space[J]. Infrared and Laser Engineering, 2011, 40(12): 2516-2520. (in Chinese)

[11] 刘福华, 安毓英, 王平, 等. 脉冲γ射线对光纤的辐射感生损耗[J]. 红外与激光工程, 2013, 42(4): 1056-1062.

    Liu Fuhua, An Yuying, Wang Ping, et al. Radiation-induced loss of pulsed γ-ray on optical fibers[J]. Infrared and Laser Engineering, 2013, 42(4): 1056-1062. (in Chinese)

[12] Moss C E, Casperson D E, Echave M A, et al. A space fiber-optic X-ray burst detector[J]. IEEE Transactions on Nuclear Science, 1994, 41(4): 1328-1332.

[13] Deparis O, Mégret P, Decrétou M, et al. Gamma radiation tests potential optical fiber candidates for fibroscopy[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 3027-3031.

[14] Borgermans P, Noel M. Multiple wavelength analysis of radiation-induced attenuation on optical fibers: a novel approach in fiber optic dosimetry[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(5): 1255-1258.

[15] Naka R, Watanabe K, Kawarabayashi J, et al. Radiation distribution sensing with normal optical fiber[J]. IEEE Transactions on Nuclear Science, 2001, 48(6): 2348-2351.

[16] Klein D M, Yukihara E G, Bulur E, et al. An optical fiber radiation sensor for remote detection of radiological materials[J]. IEEE Sensors Journal, 2005, 5(4): 581-588.

[17] Mohamed A E -N A, Rashed A N Z, El Tokhy M S, et al. An accurate model for chromatic dispersion in optical fibers under radiation and thermal effects[C]//2013 Proceedings of International Conference on Modeling, Identification & Control (ICMIC), 2013: 10-15.

[18] 国分泰雄. 光波工程[M]. 北京: 科学出版社, 2002: 131-136.

    Yasuo Kokubun. Lightwave Engineering[M]. Beijing: Science Press, 2002, 131-136. (in Chinese)

[19] 李景镇. 光学手册[M].西安:陕西科学技术出版社, 2010: 273-278.

    Li Jingzhen. Optics Handbook[J]. Xi′an: Shaanxi Science and Technology Press, 2010: 273-278. (in Chinese)

[20] 欧攀, 戴一堂, 王爱民, 等. 高等光学仿真[M]. 北京: 北京航空航天大学出版社, 2011: 88-128.

    Ou Pan, Dai Yitang, Wang Aimin, et al. Senior Optical Numerical Computing[M]. Beijing: Beihang University Press, 2011: 88-128. (in Chinese)

[21] 刘福华, 王平, 陈绍武, 等. γ辐射对光纤波导电磁场分布的影响[J]. 强激光与粒子束, 2013, 25(7): 1788-1792.

    Liu Fuhua, Wang Ping, Chen Shaowu, et al. Influence of gamma-ray radiation on electromagnetic field distribution of optical fiber waveguide[J]. High Power Laser and Particle Beams, 2013, 25(7): 1788-1792. (in Chinese)

[22] 马腾才, 胡希伟, 陈银华, 等. 离子体物理原理[M]. 合肥: 中国科技大学出版社, 1988: 170-175.

    Ma Tengcai. Hu Xiwei, Chen Yinhua, et al. Principle of Plasma Physics[M]. Hefei: University of Science and Technology of China Press, 1988: 170-175. (in Chinese)

[23] 马任德, 王政平, 王峰, 等. 辐照电子在光纤芯处能量沉积的计算[J].光学与光电技术, 2006, 4(5): 55-58.

    Ma Rende, Wang Zhengping, Wang Feng, et al. Calculation of electron energy deposition at fiber core[J]. Optics & Optoelectronic Technology, 2006, 4(5): 55-58. (in Chinese)

[24] 张荣君, 郑玉祥, 李晶, 等. 单模光纤的色散和损耗特性测量系统[J]. 实验室研究与探索, 2009, 28(10): 28-32.

    Zhang Rongjun, Zheng Yuxiang, Li Jing, et al. The dispersion and attenuation measurement system for single mode optical fiber[J]. Research and Exploration in Laboratory, 2009, 28(10): 28-32. (in Chinese)

刘福华, 王平, 冯刚, 陈绍武, 武俊杰, 刘卫平, 谢红刚. γ辐射对光纤色散的影响[J]. 红外与激光工程, 2016, 45(1): 0118001. Liu Fuhua, Wang Ping, Feng Gang, Chen Shaowu, Wu Junjie, Liu Weiping, Xie Honggang. Influence of Gamma-ray radiation on optical fiber dispersion[J]. Infrared and Laser Engineering, 2016, 45(1): 0118001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!