中国激光, 2011, 38 (11): 1108003, 网络出版: 2011-10-27   

超光滑光学基底表面原子力显微镜测试方法

Testing Method for Optical Supersmooth Substrate Surface by Atomic Force Microscopy
作者单位
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
2 中国科学院研究生院, 北京 100049
摘要
原子力显微镜(AFM)是评价亚纳米级表面粗糙度σRMS最主要的测试仪器,但其测试结果会因采样条件(采样间距、采样点数)及测量点位置变化而改变。以AFM测试超光滑光学基底随机表面为例,应用累积功率谱理论建立了确定合理采样条件的方法,避免了采样条件选取不当带来的数据丢失或冗余;通过全局优化选取测量点和局部优化选取测量点相结合,降低了样品表面区域性差异给测试结果带来的不确定性,并大大减少了获得可靠测试结果所需的测试量。上述工作为超光滑光学基底AFM测试提供了有效方案。
Abstract
Atomic force microscopy (AFM) is the main technique for measuring surfaces of sub-nanometer root-mean-square roughness, but its results always vary with the sampling conditions (sampling interval and sampling points) and measuring position. As a practical example of a supersmooth substrate random surface, an effective method based on accumulated power spectral analysis is proposed and evaluated for appropriate sampling term selecting. It is shown that this method can avoid the loss or redundancy of roughness information. A optimized measuring position selection strategy according to global and local topography analysis is proposed. It can reduce the uncertainties in surface roughness characterization due to characteristic differences of different local surfaces and the required number of measurements to obtain reliable results. The above researches provide an effective method for testing optical supersmooth substrate surface by atomic force microscopy.
参考文献

[1] Angela Duparré, Stefan Jakobs, Norbert Kaiser. Influence of substrate surface and film roughness on the quality of optical coatings for the UV spectral region [C]. SPIE, 1997, 3110: 509~516

[2] Alexander V. Tikhonravov, Michael K. Trubetskov, Andrei A. Tikhonravov et al.. Effects of interface roughness on the spectral properties of thin films and multilayers [J]. Appl. Opt., 2003, 42(25): 5140~5148

[3] Rebecca S. Retherford, Robert Sabia, Vincent P. Sokira. Effect of surface quality on transmission performance for (111)CaF2 [J]. Appl. Surf. Sci., 2001, 183(3-4): 264~269

[4] T. G. Mathia, P. Pawlus, M. Wieczorowski. Recent trend in surface metrology [J]. Wear, 2001, 271(3-4): 494~508

[5] 李剑白, 李达成, 李小芸 等. 原子力显微镜测试光学超光滑表面微轮廓的研究 [J]. 光学学报, 2000, 20(11): 1533~1537

    Li Jianbai, Li Dacheng, Li Xiaoyun et al.. Study on testing method for microprofile of optical supersmooth surface [J]. Acta Optica Sinica, 2000, 20(11): 1533~1537

[6] P. Pawlus, D. G. Chetwynd. Effcient characterization of surface topography in cylinder bores [J]. Precision Engng., 1996, 19(2-3): 164~174

[7] T. R. Thomas, B.-G. Rosen. Determination of the optimum sampling interval for rough contact mechanics [J]. Tribol. Int., 2000, 33(9): 601~610

[8] L. Blunt, S. Ebdon. The application of three-dimensional surafce measurement techniques to characterizing grinding wheel topography [J]. Int. J. Mach. Tools Manufact., 1996, 36(11): 1207~1226

[9] W. P. Dong, E. Mainsah, K. J. Stout. Determination of appropriate sampling conditions for three-dimensional microtopography measurement [J]. Int. J. Mach. Tools Manufact., 1996, 36(12): 1347~1362

[10] Pawel Pawlus. Digitisation of surface topography measurement results [J]. Measurement, 2007, 40(6): 672~686

[11] Saudi Standard Draft. A Guide to Expression of Uncertainty in Measurement [S]. 2006, NO.13

[12] James E. Bartlett, Joe W. Kotrlik, Chadwick C. Higgins. Organizational research: determining appropriate sample size in survey research [J]. Information Technology,Learning,and Performance Journal, 2001, 19(1): 43~50

[13] B.-G.Rosen, J. Garnier. Uncertainties and optimized sampling in surface roughness characterization [J]. Wear, 2011, 271(3-4): 610~615

[14] Angela Duparre, Josep Ferre-Borrull, Stefan Gliech et al.. Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components [J]. Appl. Opt., 2002, 41(1): 154~169

[15] Pawel Pawlus. Mechanical filtration of surface profiles [J]. Measurement, 2004, 35(4): 325~341

[16] Jiunn-Jong Wu. Spectral analysis for the effect of stylus tip curvature on measuring rough surfaces [J]. Wear, 1999, 230(2): 194~200

[17] M. Wieczorowski, A. Cellary, R. Majchrowski. The analysis of credibility and reproducibility of surface roughness measurement results [J]. Wear, 2010, 269(5-6): 480~484

[18] ISO12781-2. Geometrical Product Specifications(GPS)-Flatness-Extraction Strategies [S]. 2003(E)

靳京城, 金春水, 邓文渊, 喻波. 超光滑光学基底表面原子力显微镜测试方法[J]. 中国激光, 2011, 38(11): 1108003. Jin Jingcheng, Jin Chunshui, Deng Wenyuan, Yu Bo. Testing Method for Optical Supersmooth Substrate Surface by Atomic Force Microscopy[J]. Chinese Journal of Lasers, 2011, 38(11): 1108003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!