Photonics Research, 2021, 9 (2): 02000193, Published Online: Jan. 29, 2021   

Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy Download: 660次

Author Affiliations
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China
2 National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
Copy Citation Text

Xiutao Lou, Yabo Feng, Shunhu Yang, Yongkang Dong. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy[J]. Photonics Research, 2021, 9(2): 02000193.

References

[1] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 2006, 311: 1595-1599.

[2] S. M. Link, D. J. H. C. Maas, D. Waldburger, U. Keller. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science, 2017, 356: 1164-1168.

[3] S. X. Yang, C. B. Jiang, S. H. Wei. Gas sensing in 2D materials. Appl. Phys. Rev., 2017, 4: 021304.

[4] C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, R. K. Hanson. Infrared laser-absorption sensing for combustion gases. Prog. Energ. Combust., 2017, 60: 132-176.

[5] C. R. Webster, P. R. Mahaffy, S. K. Atreya, G. J. Flesch, M. A. Mischna, P. Y. Meslin, K. A. Farley, P. G. Conrad, L. E. Christensen, A. A. Pavlov, J. Martin-Torres, M. P. Zorzano, T. H. McConnochie, T. Owen, J. L. Eigenbrode, D. P. Glavin, A. Steele, C. A. Malespin, P. D. Archer, B. Sutter, P. Coll, C. Freissinet, C. P. McKay, J. E. Moores, S. P. Schwenzer, J. C. Bridges, R. Navarro-Gonzalez, R. Gellert, M. T. Lemmon, M. S. Team. Mars methane detection and variability at Gale crater. Science, 2015, 347: 415-417.

[6] J. Hodgkinson, R. P. Tatam. Optical gas sensing: a review. Meas. Sci. Technol., 2013, 24: 012004.

[7] X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, H. S. Ning. A survey on gas sensing technology. Sensors, 2012, 12: 9635-9665.

[8] M. A. Bolshov, Y. A. Kuritsyn, Y. V. Romanovskii. Tunable diode laser spectroscopy as a technique for combustion diagnostics. Spectrochim. Acta B, 2015, 106: 45-66.

[9] P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, V. Spagnolo. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev., 2018, 5: 011106.

[10] T. V. Dinh, I. Y. Choi, Y. S. Son, J. C. Kim. A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction. Sens. Actuators B, 2016, 231: 529-538.

[11] A. Dey. Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B, 2018, 229: 206-217.

[12] S. Manakasettharn, A. Takahashi, T. Kawamoto, K. Noda, Y. Sugiyama, T. Nakamura. Highly sensitive and exceptionally wide dynamic range detection of ammonia gas by indium hexacyanoferrate nanoparticles using FTIR spectroscopy. Anal. Chem., 2018, 90: 4856-4862.

[13] A. Sepman, Y. Ogren, Z. C. Qu, H. Wiinikka, F. M. Schmidt. Tunable diode laser absorption spectroscopy diagnostics of potassium, carbon monoxide, and soot in oxygen-enriched biomass combustion close to stoichiometry. Energy Fuels, 2019, 33: 11795-11803.

[14] O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express, 2013, 21: 19951-19965.

[15] L. Dong, F. K. Tittel, C. G. Li, N. P. Sanchez, H. P. Wu, C. T. Zheng, Y. J. Yu, A. Sampaolo, R. J. Griffin. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express, 2016, 24: A528-A535.

[16] V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, Y. N. Ponomarev. Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor. Infrared Phys. Technol., 2003, 44: 253-261.

[17] Q. Wang, Z. Wang, W. Ren, P. Patimisco, A. Sampaolo, V. Spagnolo. Fiber-ring laser intracavity QEPAS gas sensor using a 7.2  kHz quartz tuning fork. Sens. Actuators B, 2018, 268: 512-518.

[18] W. Jin, Y. C. Cao, F. Yang, H. L. Ho. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun., 2015, 6: 6767.

[19] P. C. Zhao, Y. Zhao, H. H. Bao, H. L. Ho, W. Jin, S. C. Fan, S. F. Gao, Y. Y. Wang, P. Wang. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun., 2020, 11: 847.

[20] S. Hanf, T. Bogozi, R. Keiner, T. Frosch, J. Popp. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. Anal. Chem., 2015, 87: 982-988.

[21] Y. Qi, Y. Zhao, H. H. Bao, W. Jin, H. L. Ho. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range. Optica, 2019, 6: 570-576.

[22] M. Nikodem, G. Wysocki. Measuring optically thick molecular samples using chirped laser dispersion spectroscopy. Opt. Lett., 2013, 38: 3834-3837.

[23] A. Cygan, P. Wcislo, S. Wojtewicz, G. Kowzan, M. Zaborowski, D. Charczun, K. Bielska, R. S. Trawinski, R. Ciurylo, P. Maslowski, D. Lisak. High-accuracy and wide dynamic range frequency-based dispersion spectroscopy in an optical cavity. Opt. Express, 2019, 27: 21810-21822.

[24] I. M. Craig, B. D. Cannon, M. S. Taubman, B. E. Bernacki, R. D. Stahl, J. T. Schiffern, T. L. Myers, M. C. Phillips. Sensing of gaseous HF at low part-per-trillion levels using a tunable 2.5-μm diode laser spectrometer operating at ambient pressure. Appl. Phys. B, 2015, 120: 505-515.

[25] I. Galli, S. Bartalini, R. Ballerini, M. Barucci, P. Cancio, M. De Pas, G. Giusfredi, D. Mazzotti, N. Akikusa, P. De Natale. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica, 2016, 3: 385-388.

[26] H. Sumizawa, H. Yamada, K. Tonokura. Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy. Appl. Phys. B, 2010, 100: 925-931.

[27] F. Dong, C. Junaedi, S. Roychoudhury, M. Gupta. Rapid, online quantification of H2S in JP-8 fuel reformate using near-infrared cavity-enhanced laser absorption spectroscopy. Anal. Chem., 2011, 83: 4132-4136.

[28] I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett., 2011, 107: 270802.

[29] A. Klein, O. Witzel, V. Ebert. Rapid, time-division multiplexed, direct absorption- and wavelength modulation-spectroscopy. Sensors, 2014, 14: 21497-21513.

[30] Z. Wang, Y. J. Du, Y. J. Ding, Z. M. Peng. A wide-range and calibration-free spectrometer which combines wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy. Sensors, 2020, 20: 585.

[31] J. Cousin, W. D. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, L. S. Rothman. Laser spectroscopic monitoring of gas emission and measurements of the 13C/12C isotope ratio in CO2 from a wood-based combustion. J. Quant. Spectrosc. Radiat. Transf., 2008, 109: 151-167.

[32] M. A. Zondlo, M. E. Paige, S. M. Massick, J. A. Silver. Vertical cavity laser hygrometer for the National Science Foundation Gulfstream-V aircraft. J. Geophys. Res. Atmos., 2010, 115: D20309.

[33] A. Pogány, S. Wagner, O. Werhahn, V. Ebert. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor. Appl. Spectrosc., 2015, 69: 257-268.

[34] J. Altmann, R. Baumgart, C. Weitkamp. Two-mirror multipass absorption cell. Appl. Opt., 1981, 20: 995-999.

[35] J. B. Mcmanus, P. L. Kebabian, W. S. Zahniser. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt., 1995, 34: 3336-3348.

[36] J. A. Silver. Simple dense-pattern optical multipass cells. Appl. Opt., 2005, 44: 6545-6556.

[37] R. M. Garner, A. N. Dharamsi, M. A. Khan. Ultra-sensitive probe of spectral line structure and detection of isotopic oxygen. Appl. Phys. B, 2018, 124: 15.

[38] B. Tuzson, M. Mangold, H. Looser, A. Manninen, L. Emmenegger. Compact multipass optical cell for laser spectroscopy. Opt. Lett., 2013, 38: 257-259.

[39] M. Dong, C. T. Zheng, D. Yao, G. Q. Zhong, S. Z. Miao, W. L. Ye, Y. D. Wang, F. K. Tittel. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC). Opt. Express, 2018, 26: 12081-12091.

[40] D. J. Lum, S. H. Knarr, J. C. Howell. Frequency-modulated continuous-wave LiDAR compressive depth-mapping. Opt. Express, 2018, 26: 15420-15435.

[41] T. Hariyama, P. A. M. Sandborn, M. Watanabe, M. C. Wu. High-accuracy range-sensing system based on FMCW using low-cost VCSEL. Opt. Express, 2018, 26: 9285-9297.

[42] X. T. Lou, C. Chen, Y. B. Feng, Y. K. Dong. Simultaneous measurement of gas absorption spectra and optical path lengths in a multipass cell by FMCW interferometry. Opt. Lett., 2018, 43: 2872-2875.

[43] X. T. Lou, Y. B. Feng, C. Chen, Y. K. Dong. Multi-point spectroscopic gas sensing based on coherent FMCW interferometry. Opt. Express, 2020, 28: 9014-9026.

[44] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, E. J. Zak. The HITRAN 2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 2017, 203: 3-69.

[45] S. M. Chernin. Development of optical multipass matrix systems. J. Mod. Opt., 2001, 48: 619-632.

[46] J. B. McManus, M. S. Zahniser, D. D. Nelson. Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number. Appl. Opt., 2011, 50: A74-A85.

Xiutao Lou, Yabo Feng, Shunhu Yang, Yongkang Dong. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy[J]. Photonics Research, 2021, 9(2): 02000193.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!