光学 精密工程, 2018, 26 (3): 556, 网络出版: 2018-04-25   

高精度弓型光纤光栅微位移传感器

High-precision bow-shaped fiber Bragg grating micro-displacement sensors
作者单位
武汉理工大学 机电工程学院, 湖北 武汉 430070
摘要
为了测量控机床结构件、微加工工作台的微小变形量, 设计了一种高精度弓型光纤布拉格光栅(FBG)微位移传感器。将光纤布拉格光栅的栅区部分粘贴在弓型上下壁处, 当弓形件发生变形时, 可测出上下壁的应变值, 从而测得位移值并进行温度解耦。实验结果表明, 在量程为1 mm时, 传感器的灵敏度为2.02 pm/μm, 线性相关系数为0998 3, 实验的迟滞误差为4.08%, 重复性误差为4.08%。在温度补偿实验中可以看出, 当温度上升1 ℃, 波长漂移量不到1 pm。类似于弓型结构衍生出一种半弓型结构的位移传感器。两类传感器相比, 弓型传感器的温度灵敏度比半弓型传感器小0001 5 pm/μm, 温度补偿效果更好; 但半弓型传感器的线性度为0.4%, 线性度比弓型传感器好。两种传感器均满足测量值稳定可靠、精度高、抗电磁干扰能力强, 温度不敏感等要求。
Abstract
In order to realize small deformation measurements of Numerical Control (NC) machine tool structures and micro-processing platforms, a high-precision optical fiber Bragg grating (FBG) micro-displacement-sensor based on a bow shape was designed. The grating region of the FBG was attached to the upper and lower walls of the bow. Hence, the strain value of the upper and lower walls could be measured while the bow was deformed, allowing displacement measurement and achieving temperature decoupling. Experimental results show that in the displacement range of 1 mm, the sensitivity by fitting a straight line is 2.02 pm/μm, the linearity is 2.92%, the linear correlation coefficient is 0.998 3, the hysteresis error of three groups is 4.08 %, and the repeatability error of three groups is 4.08%. A temperature compensation test is presented in addition, showing a wavelength drift of less than 1 pm with a temperature increase of 1 °C. Furthermore, a similar half bow structure was derived and compared with the previous bow type in terms of their performance. The comparison shows that the temperature compensation of the bow type is 0.001 5 pm/μm, which is smaller than that of the half bow type, while the latter has a better static calibration linearity of 04%. It satisfies the sensor requirements of stability, higher precision, as well as strong electromagnetic interference resistance and temperature insensitivity.
参考文献

[1] 董红磊. 精密加工与精密测量技术的发展[J]. 宇航计测技术, 2008, 28(6): 21-22, 26.

    DONG H L. Development of the precision finishing and measurement technique[J]. Journal of Astronautic Metrology and Measurement, 2008, 28(6): 21-22, 26. (in Chinese)

[2] OTHONOS A, KALLI K, KOHNKE G E. Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing[J]. Physics Today, 2000, 53(5): 61-62.

[3] RAO Y J. Recent progress in applications of in-fibre Bragg grating sensors[J]. Optics and Lasers in Engineering, 1999, 31(4): 297-324.

[4] 赛耀樟, 姜明顺, 隋青美, 等. 基于光纤光栅阵列和MVDR算法的声发射定位[J]. 光学 精密工程, 2015, 23(11): 3012-3107.

    SAI Y ZH, JIANG M SH, SUI Q M, et al.. Acoustic emission location based on FBG array and MVDR algorithm[J]. Opt. Precision Eng., 2015, 23(11): 3012-3107. (in Chinese)

[5] 赵斌, 仲志成, 林君, 等. 基于光纤光栅传感地层应力的监测方法与实验[J]. 光学 精密工程, 2016, 24(10): 346-353.

    ZHAO B, ZHONG ZH CH, LIN J, et al.. Monitoring method and experiment for stratum stress based on fiber Bragg grating sensing[J]. Opt. Precision Eng., 2016, 24(10): 346-353. (in Chinese)

[6] HOREJ O, MARE M, NOVOTNY L. Advanced modelling of thermally induced displacements and its implementation into standard CNC controller of horizontal milling center[J]. Procedia CIRP, 2012, 4: 67-72.

[7] 韦宣, 乐静, 申阿维, 等. 用于微动工作台的光纤位移传感器设计[J]. 传感器与微系统, 2013, 32(1): 115-117.

    WEI X, YUE J, SHEN A W, et al.. Design of optical fiber displacement sensor for micromotion worktable[J]. Transducer and Microsystem Technologies, 2013, 32(1): 115-117. (in Chinese)

[8] ZHAO ZH G, ZHANG Y J, LI CH, et al.. Monitoring of coal mine roadway roof separation based on fiber Bragg grating displacement sensors[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74: 128-132.

[9] 杨秀峰, 于汇, 王鹏, 等. 基于杠杆原理的新型光纤光栅微位移传感器[J]. 光电子·激光, 2010, 21(8): 1156-1158.

    YANG X F, YU H, WANG P, et al.. A novel micrometric displacement fiber grating sensor based on the principle of lever[J]. Journal of Optoelectronics·Laser, 2010, 21(8): 1156-1158. (in Chinese)

[10] SHEN CH Y, ZHONG CH. Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement[J]. Sensors and Actuators A: Physical, 2011, 170(1-2): 51-54.

[11] ZHONG CH, SHEN CH Y, CHU J L, et al.. A displacement sensor based on a temperature-insensitive double trapezoidal structure with fiber Bragg grating[J]. IEEE Sensors Journal, 2012, 12(5): 1280-1283.

[12] ZHANG Y N, ZHAO Y, WANG Q. Improved design of slow light interferometer and its application in FBG displacement sensor[J]. Sensors and Actuators A: Physical, 2014, 214: 168-174.

[13] CHEN SH M, LIU Y, LIU X X, et al.. Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating[J]. Photonic Sensors, 2015, 5(4): 351-356.

[14] TAO S C, DONG X P, LAI B W. Temperature-insensitive fiber Bragg grating displacement sensor based on a thin-wall ring[J]. Optics Communications, 2016, 372: 44-48.

[15] 郭永兴, 熊丽, 孔建益, 等. 滑动式光纤布拉格光栅位移传感器[J]. 光学 精密工程, 2017, 25(1): 50-58.

    GUO Y X, XIONG L, KONG J Y, et al.. Sliding type fiber Bragg grating displacement sensor[J]. Opt. Precision Eng., 2017, 25(1): 50-58. (in Chinese)

[16] 李天梁, 谭跃刚, 张翔, 等. 受弯件上粘贴型光纤布拉格光栅的应变传递规律[J]. 光学 精密工程, 2015, 23(5): 1254-1264.

    LI T L, TAN Y G, ZHANG X, et al.. Strain transfer factors of pasted FBG on bending part surface[J]. Opt. Precision Eng., 2015, 23(5): 1254-1264. (in Chinese)

谭跃刚, 陈宇佳, 李瑞亚, 毛健, 刘芹. 高精度弓型光纤光栅微位移传感器[J]. 光学 精密工程, 2018, 26(3): 556. TAN Yue-gang, CHEN Yu-jia, LI Rui-ya, MAO Jian, LIU Qin. High-precision bow-shaped fiber Bragg grating micro-displacement sensors[J]. Optics and Precision Engineering, 2018, 26(3): 556.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!