强激光与粒子束, 2017, 29 (8): 080201, 网络出版: 2017-06-30  

微机械谐振式加速度计的研究现状及发展趋势

Research status and development trend of micro-mechanical resonance accelerometer
作者单位
1 中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
2 中国科学院 高能物理研究所 核探测与核电子学国家重点实验室, 北京 100049
3 西南科技大学 信息工程学院, 四川 绵阳 621010
摘要
微机械谐振式加速度计(MMRA)是通过检测加速度施加前后谐振器谐振频率变化实现对加速度检测的。该传感器具有频率信号输出、稳定性好、灵敏度高、精度高等优点, 己成为MEMS传感器的重要发展方向之一。详细讨论了微机械谐振式加速度计设计中的关键技术, 难点及对应解决方案、发展趋势。其中, 关键技术包括机械结构、激励与检测方式以及谐振器刚度改变方式。分析了谐振器的三种机械结构以及微杠杆工艺误差造成的不对称性; 根据谐振器材料的压电特性, 可将MMRA分为压电MMRA和非压电MMRA, 压电MMRA的激励与检测方式都是压电激励/压电检测, 非压电MMRA主要为静电激励/电容检测; 讨论了轴向应力和静电刚度这两种谐振器刚度改变方式的原理和适用范围。微机械谐振式加速度计主要存在四个技术难点:机械耦合、温度特性、工艺误差、组装与封装, 并针对这四点给出了相应的解决方案。集成, 静电刚度, 新材料, 多轴以及更高的性能指标将是今后微机械谐振式加速度计的主要发展趋势。
Abstract
The micro-mechanical resonance accelerometer(MMRA) is used to measure the acceleration by detecting the change of resonant frequency of the sensitive element.This kind of sensor has become one of the important development direction of micro-sensors because it has many advantages such as frequency signal output, high stability, sensitivity and precision.This paper describes the key technologies, difficulties and corresponding solutions, development trends of MMRA. The key technologies include mechanical structure, excitation and detection methods, and methods of changing the resonator stiffness. The three mechanical structures of the resonator and the asymmetry caused by the error of the micro-lever process are analyzed; according to the piezoelectric properties of the resonator’s materials, MMRA can be divided into piezoelectric MMRA and non-piezoelectric MMRA, piezoelectric MMRA employs piezoelectric excitation/piezoelectric detection and non-piezoelectric are mainly electrostatic excitation/capacitance detection; there are two main methods to change the stiffness of the resonator: axial stress method and electrostatic stiffness method, whose principles and scopes are analyzed and compared. Development of MMRA mainly includes four technical difficulties: mechanical coupling, temperature characteristics, process error, assembly and packaging, and the corresponding solutions are given. Integration, static stiffness, new materials, multi-axis and higher performance will be the main development trends for MMRA in the future.
参考文献

[1] 王巍. 新型惯性技术发展及在宇航领域的应用[J]. 红外与激光工程, 2016, 45(3): 1-6. (Wang Wei. Development of new inertial technology and its application in aerospace field. Infrared and Laser Engineering, 2016, 45(3): 1-6)

[2] Jing L I, Fan S C, Cheng L I, et al. Research progress of silicon resonant MEMS accelerometer[J]. Transducer & Microsystem Technologies, 2011, 30(12): 4-7.

[3] 万蔡辛, 李丹东, 张承亮, 等. 硅微谐振式加速度计技术现状及展望[J]. 导航与控制, 2010, 9(2): 72-79. (Wan Caixin, Li Dandong, Zhang Chengliang, et al. Present state and perspectives of micro silicon oscillating accelerometer. Navigation and Control, 2010, 9(2) : 72-79)

[4] Liang J, Chai Y, Meng G, et al. Surface electrode configurations for quartz MEMS double-ended tuning fork resonator[J]. Micro & Nano Letters, 2013, 8(1): 52-55.

[5] Vigevani G, Goericke F T, Izyumin I I, et al. Electrode design and coupling optimization of aluminum nitride DETF[C]//IEEE International Ultrasonics Symposium. 2011: 1731-1734.

[6] 王超, 胡启方, 王岩, 等. 硅微谐振式加速度计结构设计与仿真优化[J]. 导航与控制, 2016, 15(1): 41-46. (Wang Chao, Hu Qifang, Wang Yan, et al. Structure design and simulated optimization of silicon resonant accelerometer. Navigation and Control, 2016, 15(1): 41-46)

[7] Su X P S, Yang H S. Single-stage microleverage mechanism optimization in a resonant accelerometer[J]. Structural & Multidisciplinary Optimization, 2001, 21(3): 246-252.

[8] 陈卫卫. 硅微谐振式加速度计结构设计与分析[D]. 南京:东南大学, 2012. (Chen Weiwei. Structure design and analysis of micromechanical silicon resonant accelerometer. Nanjing: Southeast University, 2012)

[9] Albert W C. Force sensing using quartz crystal flexure resonators[C]//IEEE Symposium on Frequency Control. 1984: 233-239.

[10] 董景新, 曹宇, 万蔡辛, 等. 硅微谐振式加速度计2种谐振结构比较[J]. 清华大学学报(自然科学版), 2010, 50(11): 1825-1828. (Dong Jingxin, Cao Yu, Wan Caixin, et al. Comparison of two resonant structures in silicon oscillating accelerometers. Journal of Tsinghua University(Science and Technology), 2010, 50 (11): 1825-1828)

[11] 姚保寅, 冯丽爽, 周震, 等. 硅谐振式加速度计(SOA)的技术及发展[J]. 导航与控制, 2011, 10(1): 33-40. (Yao Baoyin, Feng Lishuang, Zhou Zhen, et al. Technologies and development of silicon oscillating accelerometer(SOA). Navigation and Control, 2011, 10(1): 33-40)

[12] Roessig T A, Howe R T, Pisano A P, et al. Surface-micromachined resonant accelerometer[C]//IEEE International Conference on Solid State Sensors and Actuators. 1997: 859-862.

[13] Comi C, Corigliano A, Langfelder G, et al. A high sensitivity uniaxial resonant accelerometer[C]//IEEE International Conference on MICRO Electro Mechanical Systems. 2010: 260-263.

[14] Chen D, Wu Z, Liu L, et al. An electromagnetically excited silicon nitride beam resonant accelerometer[J]. Sensors, 2009, 9(3): 1330-1338.

[15] Hopkins R E, Borenstein J T, Antkowiak B M, et al. The silicon oscillating accelerometer: a MEMS inertial instrument for strategic missile guidance[R]. 1998.

[16] Su X P S, Yang H S. Design of compliant microleverage mechanisms[J]. Sensors & Actuators A Physical, 2001, 87(3): 146-156.

[17] Su X P S, Yang H S, Agogino A M. A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology[J]. IEEE Sensors Journal, 2005, 5(6): 1214-1223.

[18] Ding H, Zhao J, Xie J. A novel biaxial resonant micro accelerometer with microleverage mechanism[C]//IEEE International Conference on Nano/micro Engineered and Molecular Systems. 2015: 50-53.

[19] Ding H, Zhao J, Ju B F, et al. A new analytical model of single-stage microleverage mechanism in resonant accelerometer[J]. Microsystem Technologies, 2016, 22(4): 757-766.

[20] Li C, Zhao Y, Cheng R, et al. A resonant sensor composed of quartz double ended tuning fork and silicon substrate for digital acceleration measurement[J]. Review of Scientific Instruments, 2014, 85(3): 1-6.

[21] Li C, Zhao Y, Cheng R. A micro resonant acceleration sensor comprising silicon support with temperature isolator and quartz doubled ended tuning fork[C]//IEEE International Conference on Nano/micro Engineered and Molecular Systems. 2014: 346-349.

[22] Vigevani G, Goericke F T, Pisano A P, et al. Microleverage DETF aluminum nitride resonating accelerometer[C]//IEEE Frequency Control Symposium. 2012: 1-4.

[23] Park U, Rhim J, Jeon J U, et al. A micromachined differential resonant accelerometer based on robust structural design[J]. Microelectronic Engineering, 2014, 129(16): 5-11.

[24] Xia Guoming, Qiu Anping, Shi Qin, et al. Test and evaluation of a silicon resonant accelerometer implemented in SOI technology[C]//IEEE Sensors. 2013: 1-4.

[25] Satchell D W, Greenwood J C. A thermally-excited silicon accelerometer[J]. Sensors & Actuators, 1989, 17(1): 241-245.

[26] Kim I, Seok S, Kim H C, et al. Wafer level vacuum packaged out-of-plane and in-plane differential resonant silicon accelerometers for navigational applications[J]. Journal of Semiconductor Technology & Science, 2005, 5(1): 58-66.

[27] Shang Yanlong, Wang Junbo, Tu Sheng, et al. Z-axis differential silicon-on-insulator resonant accelerometer with high sensitivity[J]. Micro & Nano Letters, 2011, 6(7): 519-522.

[28] Wang Junbo, Shang Yanlong, Chen Jian, et al. Micro-machined resonant out-of-plane accelerometer with a differential structure fabricated by silicon-on-insulator-MEMS technology[J]. Micro & Nano Letters, 2012, 7(12): 1230-1233.

[29] Abdolvand R, Bahreyni B, Lee J, et al. Micromachined resonators: A review[J]. Micromachines, 2016, 7(9): 1-56.

[30] 庄瑞芬. 硅微谐振式加速度计结构设计技术研究[D]. 南京:南京理工大学, 2009. (Zhuang Ruifen. Research on structure design technology of silicon micro resonant accelerometer. Nanjing: Nanjing University of Science and Technology, 2009)

[31] 刘恒, 刘清惓, 孟瑞丽. 静电刚度谐振式微加速度计及其接口电路分析[J]. 传感技术学报, 2011, 24(11): 1556-1560. (Liu Heng, Liu Qingquan, Meng Ruili. Principle and interface circuit analysis for a novel type resonant accelerometer. Chinese Journal of Sensors and Actuators, 2011, 24(11): 1556-1560)

[32] Zhang Fengtian, He Xiaoping, Shi Zhigui, et al. Structure design and fabrication of silicon resonant micro-accelerometer based on electrostatic rigidity[J]. Lecture Notes in Engineering & Computer Science, 2009, 2176(1): 37-45.

[33] Seok S, Kim H, Chun K. An inertial-grade laterally-driven MEMS differential resonant accelerometer[C]//IEEE Sensors. 2004: 654-657.

[34] Seok S, Seong S, Lee B, et al. A high performance mixed micromachined differential resonant accelerometer[C]//IEEE Sensors. 2002: 1058-1063.

[35] Kim H C, Seok S, Kim I, et al. Inertial-grade out-of-plane and in-plane differential resonant silicon accelerometers (DRXLs)[C]//IEEE International Conference on Solid-State Sensors. 2005: 172-175.

[36] Comi C, Corigliano A, Ghisi A, et al. A resonant micro accelerometer based on electrostatic stiffness variation[J]. Meccanica, 2013, 48(8): 1893-1900.

[37] Caspani A, Comi C, Corigliano A, et al. A differential resonant micro accelerometer for out-of-plane measurements[J]. Procedia Engineering, 2014, 87: 640-643.

[38] Comi C, Corigliano A, Langfelder G, et al. Sensitivity and temperature behavior of a novel z-axis differential resonant micro accelerometer[J]. Journal of Micromechanics & Microengineering, 2016, 26(3): 1-11.

[39] Yang Bo, Wang Xingjun, Dai Bo, et al. A new z-axis resonant micro-accelerometer based on electrostatic stiffness[J]. Sensors, 2015, 15(1): 478-483.

[40] Meredith, Susanne K. Effects of mechanical coupling on oscillator frequency in a micromechanical accelerometer[D]. Cambridge: Massachusetts Institute of Technology, 2001.

[41] 陈卫卫, 黄丽斌, 杨波. 不等基频硅微谐振式加速度计[J]. 传感技术学报, 2011, 24(11): 1538-1541. (Chen Weiwei, Huang Libin, Yang Bo. Micromechanical silicon resonant accelerometer with different resonant frequency. Chinese Journal of Sensors and Actuators, 2011, 24(11): 1538-1541)

[42] Dong Jinhu, Qiu Anping, Shi Ran. Temperature influence mechanism of micromechanical silicon oscillating accelerometer[C]//IEEE Power Engineering and Automation Conference. 2011: 385-389.

[43] Le Traon O, Janiaud D, Pernice M, et al. A new quartz monolithic differential vibrating beam accelerometer[C]//IEEE/ION Position, Location, and Navigation Symposium. 2006: 6-15.

[44] Vigevani G, Przybyla R J, Yen T T, et al. Characterization of a single port aluminum nitride tuning fork[C]// IEEE Ultrasonics Symposium. 2010: 1281-1285.

[45] Vigevani G. MEMS aluminum nitride technology for inertial sensors[D]. Berkeley: University of California, 2011.

[46] Huang Libin, Yang Hui, Gao Yang, et al. Design and implementation of a micromechanical silicon resonant accelerometer[J]. Sensors, 2013, 13(11): 15785-15804.

[47] Liang Jinxing, Zhang Liyuan, Wang Ling, et al. Flip chip bonding of a quartz MEMS-based vibrating beam accelerometer. [J]. Sensors, 2015, 15(9): 22049-22059.

[48] 蔡梅妮, 林友玲, 车录锋, 等. 用于器件级真空封装的MEMS加速度传感器的设计与制作[J]. 传感器与微系统, 2012, 31(12): 107-110. (Cai Meini, Lin Youlin, Che Lufeng, et al. Design and fabrication of MEMS acceleration sensor for device-level vacuum packaging. Transducer and Microsystem Technologies, 2012, 31(12): 107-110)

[49] 施芹, 苏岩, 裘安萍, 等. MEMS陀螺仪器件级真空封装技术[J]. 光学 精密工程, 2009, 17(8): 1987-1992. (Shi Qin, Su Yan, Qiu Anping, et al. Device level vacuum packaging technologies of MEMS gyroscopes. Optics and Precision Engineering, 2009, 17(8): 1987-1992)

[50] 陈德勇, 曹明威, 王军波, 等. 谐振式MEMS压力传感器的制作及圆片级真空封装[J]. 光学 精密工程, 2014, 22(5): 1235-1242. (Chen Deyong, Cao Mingwei, Wang Junbo, et al. Fabrication and wafer-level vacuum packaging of MEMS resonant pressure sensor. Optics and Precision Engineering, 2014, 22(5): 1235-1242)

[51] Zhang Jing, Su Yan, Shi Qin, et al. Microelectromechanical resonant accelerometer designed with a high sensitivity[J]. Sensors, 2015, 15(12): 293-310.

[52] Xia Guoming, Qiu Anping, Shi Qin, et al. A wafer level vacuum packaged silicon vibration beam accelerometer[C]//IEEE International Symposium on Inertial Sensors and Systems. 2015: 1-4.

[53] Torunbalci M M, Alper S E, Akin T. Wafer level hermetic encapsulation of MEMS inertial sensors using SOI cap wafers with vertical feedthroughs[C]//IEEE International Symposium on Inertial Sensors and Systems. 2014: 1-2.

[54] Lee J, Rhim J. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control[J]. Journal of Micromechanics & Microengineering, 2012, 22(9): 16-26.

[55] Myers D R, Cheng K B, Jamshidi B, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments[J]. Engineering Sciences, 2012, 10(5): 36-41.

[56] Yang Bo, Zhao Hui, Dai Bo, et al. A new silicon biaxial decoupled resonant micro-accelerometer[J]. Microsystem Technologies, 2015, 21(1): 109-115.

[57] Zhao Lei, Dai Bo, Yang Bo, et al. Design and simulations of a new biaxial silicon resonant micro-accelerometer[J]. Microsystem Technologies, 2015, 22(12): 1-6.

[58] Yang Bo, Dai Bo, Zhao Hui, et al. A new silicon triaxial resonant micro-accelerometer[C]//IEEE International Conference on Information Science, Electronics and Electrical Engineering. 2014: 1283-1286.

[59] Comi C, Corigliano A, Langfelder G, et al. A new biaxial silicon resonant micro accelerometer[C]//IEEE International Conference on MICRO Electro Mechanical Systems. 2011: 529-532.

[60] Caspani A, Comi C, Corigliano A, et al. Compact biaxial micromachined resonant accelerometer[J]. Journal of Micromechanics & Microengineering, 2013, 23(10): 3210-3216.

高杨, 雷强, 赵俊武, 吕军光. 微机械谐振式加速度计的研究现状及发展趋势[J]. 强激光与粒子束, 2017, 29(8): 080201. Gao Yang, Lei Qiang, Zhao Junwu, Lü Junguang. Research status and development trend of micro-mechanical resonance accelerometer[J]. High Power Laser and Particle Beams, 2017, 29(8): 080201.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!