作者单位
摘要
1 西南科技大学 信息工程学院, 四川 绵阳 621010
2 中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
3 中国科学院 高能物理研究所 核探测与核电子学国家重点实验室, 北京 100049
为了保证移动设备在Wi-Fi频段正常工作且不受相邻频段的干扰,设计了一种用于Wi-Fi IEEE802.11b频段(2402~2482 MHz)的BAW滤波器。设计基于薄膜体声波谐振器(FBAR)的一维Mason等效电路模型构成初始结构的梯形滤波器。然后,将串联FBAR的谐振区面积值以及串、并联FBAR的谐振区面积的比值设置为优化参数,以所需的滤波器的带内插损和带外抑制为优化目标,使用ADS软件基于遗传和梯度的优化算法对滤波器进行优化。在滤波器的设计过程中,为了使仿真结果更加精确,采用声电磁协同仿真方法对滤波器进行仿真,并与Mason 等效电路模型仿真结果对比,结果表明,滤波器性能有所下降,带内插损增大1.6 dB,带内纹波增大1.1 dB,带外抑制基本一致。所设计的Wi-Fi频段的BAW滤波器具有低插入损耗(小于3 dB)、高带外抑制(大于40 dB)性能。
Wi-Fi频段 滤波器 体声波 Mason模型 声电磁协同仿真 Wi-Fi band filter bulk acoustic wave Mason model combined acoustic-electromagnetic simulation 
强激光与粒子束
2017, 29(10): 104104
作者单位
摘要
1 西南科技大学 信息工程学院, 四川 绵阳 621010
2 中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
3 中国科学院 高能物理研究所, 核探测与核电子学国家重点实验室, 北京 100049
基于氮化铝双端固支音叉(AlN DETF)的谐振式传感器具有尺寸小、稳定性和可靠性好、时间响应快等特点。为了提高灵敏度和分辨率,需要分析AlN DETF谐振器的振梁结构参数对灵敏度和信号功率的影响。在有限元仿真软件中建立AlN谐振器的多物理场模型,进行预应力特征频率分析,仿真验证单个振梁结构参数对灵敏度的影响。在振梁厚度保持恒定的情况下,对仿真结果的数据进行后处理,得到信号功率与振梁长度、宽度的关系。结果表明,相对灵敏度、信号功率随振梁长度、宽度的变化趋势相反。因此,需要根据工艺水平和结构强度等因素,综合考虑AlN谐振器的信号功率和相对灵敏度,对两者进行权衡。仿真分析了优化后AlN DETF谐振器的性能,±10 μN范围内的灵敏度为56 Hz/μN,信号功率为6.8×10-4 nW,Q值为958。
微传感器 氮化铝双端固支音叉 灵敏度 信号功率 micro-sensor aluminum nitride double-ended tuning fork sensitivity signal power 
强激光与粒子束
2017, 29(10): 104101
作者单位
摘要
1 中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
2 中国科学院 高能物理研究所 核探测与核电子学国家重点实验室, 北京 100049
3 西南科技大学 信息工程学院, 四川 绵阳 621010
微机械谐振式加速度计(MMRA)是通过检测加速度施加前后谐振器谐振频率变化实现对加速度检测的。该传感器具有频率信号输出、稳定性好、灵敏度高、精度高等优点, 己成为MEMS传感器的重要发展方向之一。详细讨论了微机械谐振式加速度计设计中的关键技术, 难点及对应解决方案、发展趋势。其中, 关键技术包括机械结构、激励与检测方式以及谐振器刚度改变方式。分析了谐振器的三种机械结构以及微杠杆工艺误差造成的不对称性; 根据谐振器材料的压电特性, 可将MMRA分为压电MMRA和非压电MMRA, 压电MMRA的激励与检测方式都是压电激励/压电检测, 非压电MMRA主要为静电激励/电容检测; 讨论了轴向应力和静电刚度这两种谐振器刚度改变方式的原理和适用范围。微机械谐振式加速度计主要存在四个技术难点:机械耦合、温度特性、工艺误差、组装与封装, 并针对这四点给出了相应的解决方案。集成, 静电刚度, 新材料, 多轴以及更高的性能指标将是今后微机械谐振式加速度计的主要发展趋势。
谐振器 谐振频率 灵敏度 micro-mechanical resonance accelerometer MMRA resonator resonant frequency sensitivity 
强激光与粒子束
2017, 29(8): 080201
作者单位
摘要
1 西南科技大学 信息工程学院, 四川 绵阳 621010
2 中国科学院 高能物理研究所, 核探测与核电子学国家重点实验室, 北京 100049
3 中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
实验证明薄膜体声波谐振器(FBAR)用于检测伽马辐照是可行的,但未对敏感机理进行深入研究。针对这一问题,根据两种不同的FBAR结构,提出了不同机理来解释FBAR在伽马辐照下谐振频率偏移的原因。其中结构一FBAR为四层叠层结构(金属层-压电层-氧化层-金属层),伽马辐照之后,会在辐照敏感层(氧化层)形成一个电压,相当于给压电层施加了一个直流电压,从而使谐振频率发生偏移; 结构二与结构一不同的是,结构二FBAR在氧化层和压电层之间有一半导体层,辐照之后在氧化层中形成的电压改变了半导体的表面势,使半导体空间电荷层电容发生改变,从而改变谐振频率。通过仿真得到两种不同机理的结果,并与相关文献的测试结果对比,发现频率偏移的趋势和频率偏移量的数量级是相同的,因此提出来的两种机理是可行的。
薄膜体声波谐振器 伽马辐照 频率偏移 空间电荷层电容 film bulk acoustic resonators gamma irradiation frequency shift space charge layer capacitance 
强激光与粒子束
2017, 29(7): 074101
作者单位
摘要
1 西南科技大学 信息工程学院, 四川 绵阳 621010
2 中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
3 中国科学院 高能物理研究所, 核探测与核电子学国家重点实验室, 北京 100049
在薄膜体声波谐振器(FBAR)振荡器中,振荡器的有载品质因数(QL)和FBAR的品质因数(Q值)均与振荡器的频率稳定度有关。为了研究这两种品质因数对FBAR振荡器频率稳定度的影响,在COMSOL Multiphysics软件中建立了FBAR的多物理场模型,通过频域仿真和MBVD(Modified Butterworth-Van Dyke)模型参数拟合,得到了MBVD模型参数,并在ADS软件中建立了MBVD模型电路,通过S参数仿真结合求取Q值的Bode法得到了不同损耗对应的Q值; 再建立基于Pierce架构的振荡器,通过谐波平衡仿真得到了相位噪声,通过分别改变QL和Q得到了二者对FBAR振荡器频率稳定度的影响。结果表明: 频率稳定度随QL和Q的增大而增大,Q值随不同损耗的增大而减小。当FBAR的Q值低于338时,即使通过增大QL来提高频率稳定度,其效果也不佳,以此FBAR构成的振荡器将不能满足作为无线通信射频前端参考信号源或者FBAR传感器读出电路的要求。为FBAR参考信号源和FBAR传感器读出电路的设计提供了一定的参考。
薄膜体声波谐振器 Pierce振荡器 品质因数 频率稳定度 相位噪声 film bulk acoustic resonator Pierce oscillator quality factor frequency stability phase noise 
强激光与粒子束
2017, 29(5): 054101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!