大气与环境光学学报, 2017, 12 (1): 22, 网络出版: 2017-02-09  

基于短波红外波段吸收技术的CO2垂直柱浓度地基遥测反演方法研究

Remote Sensing Inversion Method of CO2 Vertical Column Density Based on Short Wave Infrared Absorption Technology
王汝雯 1,2徐晋 1,*李昂 1谢品华 1,3,4
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院环境光学与技术重点实验室, 安徽 合肥230031
2 中国科学技术大学研究生院, 安徽 合肥 230026
3 中国科学院区域大气环境研究卓越创新中心,中国科学院城市环境研究所, 福建 厦门 361021
4 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
摘要
温室气体引起的全球变暖、气候变化等问题已成为国际关注的热点,其中CO2是重要的温室气体之一, CO2的监测与控制已经成为各国 关注的重点。结合CO2在1.6 μm处的光谱吸收结构,利用加权函数修正的差分吸收光谱技术 (weighted function modified difference absorption spectroscopy, WFM-DOAS)研究大气中CO2垂直柱浓度 的反演方法。利用大气辐射传输模型仿真研究了不同参数对加权函数(weighted function, WF)计算灵敏度的影响,分别对观测高度、太阳天顶角、太阳方位角、 地表反照率、光谱分辨率等参数对CO2 WF系数的影响进行了详细的计算分析。并以一整天测量的太阳光为例,对仪器的性能、CO2的垂 直柱浓度及干扰气体CH4及H2O的垂直柱浓度进行了分析,初步分析得到的反演误差优于1%。
Abstract
Global warming, climate change and other issues caused by greenhouse gases have been the hotspot of international concern. CO2 is one of the important greenhouse gas, monitoring and controling of CO2 have been the focus of all countries. Based on the spectral absorption structure of CO2 in the 1.6 μm, the retrieval algorithm applied to obtain the CO2 column information from spectroscopic measurements was researched by using the weighted function modified difference absorption spectroscopy (WFM-DOAS) method. Based on atmospheric radiative transfer model, effects of the parameters on the sensitivity of the weighted function (WF) calculation were studied and simulated. The influence of different parameters on CO2 WF coefficient is calculated and analyzed in detail, including observation height, the solar zenith angle, solar azimuth, surface albedo, spectral resolution and so on. And based on the sunlight spectrum of zenith direction, the performance of the instrument, CO2 vertical column concentration and disturbance, and CH4 and H2O vertical column concentration were analyzed. And a preliminary analysis of the inversion error is better than 1%.
参考文献

[1] Barkley M P, Monks P S, Hewitt1 A J, et al. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS [J]. Atmos. Chem. Phy., 2007, 7(13): 3597-3619.

[2] Platt U, Perner D, Patz H. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical-absorption [J]. J. Geophys. Res., 1979, 84(NC10): 6329-6335.

[3] 司福祺, 谢品华, 窦 科, 等. 被动多轴差分吸收光谱大气气溶胶光学厚度监测方法研究 [J]. 物理学报, 2010, 59(4): 2867-2872.

    Si Fuqi, Xie Pinhua, Dou Ke, et al. Determination of the atmospheric aerosol optical density by multi axis axis differential optical absorption spectroscopy [J]. Acta Physica Sinaca, 2010, 59(4): 2867-2872(in Chinese).

[4] 郝 楠,周 斌, 陈立民 .利用差分吸收光谱法测量亚硝酸和反演气溶胶参数[J].物理学报, 2006, 55(3): 1529-1533.

    Hao Nan, Zhou Bin, Chen Limin. Measurement of nitrous acid and retrieval of aerosol parameters with differential optical absorption [J]. Acta Physica Sinica, 2006, 55(3): 1529-1533(in Chinese).

[5] 徐 晋,谢品华,司福祺,等. 机载多轴差分吸收光谱技术获取对流层NO2垂直柱浓度的研究 [J]. 物理学报, 2012, 61(2): 024204.

    Xu Jin, Xie Pinhua, Si Fuqi, et al. Determination of tropospheric NO2 by airborne multi axis differential optical absorption spectroscopy [J]. Acta Physica Sinica, 2012, 61(2): 024204(in Chinese).

[6] 周 斌,刘文清,齐 峰,等.差分吸收光谱法测量大气污染的浓度反演方法研究 [J]. 物理学报, 2001, 50(9): 1818-1823.

    Zhou Bin, Liu Wenqing, Qi Feng,et al. Study of concentration retrieving method in differential optical absorption spectroscopy for measuring air pollutants [J]. Acta Physica Sinica, 2001, 50(9): 1818-1823(in Chinese).

[7] 孙友文,刘文清,谢品华,等. 红外差分光学吸收光谱技术测量环境大气中的水汽 [J]. 物理学报, 2012, 61(14): 140705.

    Sun Youwen, Liu Wenqing, Xie Pinhua,et al. Measurement of atmospheric water vapor using infrared differential optical absorption spectroscopy [J]. Acta Physica Sinica, 2012, 61(14): 140705(in Chinese).

[8] 孙友文,刘文清,汪世美,等. 单组分双分析通道红外气体检测方法研究 [J]. 物理学报, 2012, 61(14): 140704.

    Sun Youwen, Liu Wenqing, Wang Shimei, et al. Measurement of a gas using none dispersive infrared technique with two analysis channels [J]. Acta Physica Sinica, 2012, 61(14): 140704(in Chinese).

[9] Burrows J P, Holzle E, Goede A P H,et al. SCIAMACHY-Scanning imaging absorption spectrometer for atmospheric chartography [J]. Acta Astronaut., 1995, 35(7): 445-451.

[10] Buchwitz M, Rozanov V V, Burrows J P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances [J]. J. Geophys. Res., 2000, 105(D12): 15231-15245.

[11] Krings T, Gerilowski K, Buchwitz M,et al. MAMAP-a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates [J].Atmos. Meas. Tech., 2011, 4(9): 1735-1758.

[12] Kobayashi N, Inoue G, Kawasaki M,et al. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites [J]. Atmos. Meas. Tech., 2010, 3(4): 1103-1112.

[13] 宋文宝, 靳阳明, 赵知诚, 等. 大气CO2甚高光谱分辨率成像光谱仪分析与光学设计 [J]. 光学学报, 2015, 35(7): 0722001.

    Song Wenbao, Jin Yangming, Zhao Zhicheng,et al. Analysis and optical design of very high spectral resolution imaging spectrometer of the atmospheric CO2 [J]. Acta Optica Sinica, 2015, 35(7): 0722001(in Chinese).

[14] 孙友文,刘文清,汪世美,等. NDIR多组份气体分析的干扰修正方法研究 [J]. 光谱学与光谱分析,2011, 31(10): 2719-2724.

    Sun Youwen, Liu Wenqing, Wang Shimei, et al. Research on the method of interference correction for nondispersive infrared multi-component gas analysis [J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2719-2724(in Chinese).

王汝雯, 徐晋, 李昂, 谢品华. 基于短波红外波段吸收技术的CO2垂直柱浓度地基遥测反演方法研究[J]. 大气与环境光学学报, 2017, 12(1): 22. WANG Ruwen, XU Jin, LI Ang, XIE Pinhua. Remote Sensing Inversion Method of CO2 Vertical Column Density Based on Short Wave Infrared Absorption Technology[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(1): 22.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!