强激光与粒子束, 2015, 27 (3): 032012, 网络出版: 2015-03-23  

ICF点火靶定标关系与稳定性优化设计研究

Scaling formula of ICF ignition targets and study of targets optimized in stability performance
作者单位
北京应用物理与计算数学研究所, 北京 100088
摘要
激光等离子体相互作用(LPI)和瑞利-泰勒流体不稳定性(RTI)是影响间接驱动惯性约束聚变成功的两个主要不确定性因素。点火黑腔内环激光通道在靠近黑腔壁的区域是内环激光SRS背反产生与发展的主要区域。内环通道在该区域满足通道内外压力平衡和能量平衡条件。据此提出了间接驱动惯性约束聚变点火黑腔等离子体定标关系。结合描述靶丸内爆飞行阶段物理以及内爆性能的两个定标关系, 提出了描述稳定性相对性能的指标。该指标可以指导点火靶设计, 为LPI和RTI提供需要的裕量空间, 是点火阈值因子(ITF)的补充。
Abstract
Laser and plasma interaction (LPI) and Rayleigh-Taylor instability (RTI) are two main ingredients affecting the success of ignition. The gas fill near the Au wall along the inner laser cone is the main region where SRS instabilities occur. At this region, pressure balance and energy balance between the inside and the outside of inner laser cone path are obtained. A plasma scaling model in ignition hohlraum of ICF is developed. Considering the scaling formula in capsule, an index is proposed which describes the stability performance. Designing of ignition targets is directed by using this index to obtain more margin for LPI and RTI.
参考文献

[1] 丁永坤, 江少恩, 刘慎业, 等. 激光聚变研究中心聚变靶物理实验和诊断技术研究进展[J]. 强激光与粒子束, 2013, 25 (12): 3077-3081.(Ding Yongkun, Jiang Shaoen, Liu Shenye, et al. Recent progress on physical experiment and target diagnostics in Research Center of Laser Fusion. High Power Laser and Particle Beams, 2013, 25 (12): 3077-3081)

[2] 黄运保, 赵权. ICF内爆靶丸能流分布三维数值仿真[J]. 强激光与粒子束, 2013, 25 (8): 2011-2016.(Huang Yunbao, Zhao Quan. 3D numerical simulation of flux distribution on implosion capsule in inertial confinement fusion. High Power Laser and Particle Beams, 2013, 25 (8): 2011-2016)

[3] 张钧, 常铁强. 激光核聚变靶物理基础[M]. 北京: 国防工业出版社, 2004: 40-41. (Zhang Jun, Chang Tieqiang. Fundaments of the Target Physics for Laser Fusion. Beijing: National Defense Industry Press, 2004: 40-41)

[4] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491.

[5] Hinkel D E, Callahan D A, Meezan N B, et al. Analyses of laser-plasma interactions in NIF ignition emulator designs[J]. Physics of Plasmas, 2008, 15: 056314.

[6] Paisner J A, Campbell E M , Hogan W J. The National Ignition Facility project[J]. Fusion Science Technology, 1994, 26: 755-770.

[7] Dppner T, Thomas C A, Divol L, et al. Direct measurement of energetic electron coupling to an imploding low-adiabat inertial confinement fusion capsule[J]. Physical Review Letters, 2012, 108: 135006.

[8] Edwards M J, Patel P K, Lindl J D, et al. Progress towards ignition on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20: 070501.

[9] Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501.

[10] Pei Wenbin. The construction of simulation algorithms for laser fusion[J]. Communications in Computational Physics, 2007, 2: 255-270.

[11] 李欣, 吴畅书, 邹士阳, 等. 点火黑腔二维模拟设计[J]. 计算物理, 2013, 30(3): 42-49. (Li Xin, Wu Changshu, Zou Shiyang, et al. 2-D simulation design of an ignition hohlraum. Chinese Journal of Computational Physics, 2013, 30(3): 42-49)

[12] Hao Liang, Liu Zhanjun, Zheng Chunyang, et al. Study of stimulated Raman and Brillouin scattering in a finite interaction region under the convective instability condition[J]. Chinese Science Bulletin, 2012, 57(21): 2747-2751.

[13] Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Competition between the stimulated Raman and Brillouin scattering under the strong damping condition[J]. Laser and Particle Beams, 2013, 31: 203-209.

[14] Spitaer L, Hrm R. Transport phenomena in a completely ionized gas[J]. Physical Review, 1953, 89: 977-981.

[15] Johnston T W, Dawson J W. Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas[J]. Physics of Fluids, 1973, 16: 722-722.

[16] Atzeni S, Jurgen M. 惯性聚变物理[M]. 北京: 科学出版社, 2008: 196. (Atzeni S, Jurgen M. The Physics of Inertial Fusion. Beijing: Science Press, 2008: 196)

[17] Herrmann M C, Tabak M, Lindl J D. A generalized scaling law for the ignition energy of inertial confinement fusion capsules[J]. Nuclear Fusion, 2001, 41(1): 99-111.

[18] Kemp A, Meyer-ter-Vehn J. Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets[J]. Physical Review Letters, 2001, 86(15): 3336-3339.

[19] Herrmann M C, Tabak M, Lindl J D. Ignition scaling laws and their application to capsule design[J]. Physics of Plasmas, 2001, 8(5): 2296-2304.

[20] Clark D S, Haan S W, Salmonson J D. Robustness studies of ignition targets for the National Ignition Facility in two dimensions[J]. Physics of Plasmas, 2008, 15: 056305.

[21] 李欣. 激光光路追踪Wigner分布函数方法[J]. 强激光与粒子束, 2013,25(7): 1705-1708. (Li Xin, Wigner distribution function method for laser-beam ray tracing. High Power Laser and Particle Beams, 2013, 25(7): 1705-1708)

[22] 李欣, 郝亮. 基于光路追踪方法的激光交叉束能量转移模型[J]. 强激光与粒子束, 2014, 26: 052004.(Li Xin, Hao Liang. Laser crossing-beam energy transfer model based on ray-tracing method. High Power Laser and Particle Beams, 2014, 26: 052004)

李欣, 戴振生, 郑无敌. ICF点火靶定标关系与稳定性优化设计研究[J]. 强激光与粒子束, 2015, 27(3): 032012. Li Xin, Dai Zhensheng, Zheng Wudi. Scaling formula of ICF ignition targets and study of targets optimized in stability performance[J]. High Power Laser and Particle Beams, 2015, 27(3): 032012.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!