激光与光电子学进展, 2014, 51 (9): 090002, 网络出版: 2014-08-15   

中红外重金属氧化物玻璃羟基的去除研究进展 下载: 616次

Research Progress of Dehydration Techniques in Mid-Infrared Heavy Metal Oxide Glass
作者单位
1 中国科学院上海光学精密机械研究所高功率激光单元技术研发中心, 上海201800
2 中国科学院大学, 北京100049
摘要
重金属氧化物玻璃中—OH的存在对玻璃光学性质产生干扰影响,使玻璃在中红外波段产生较大损耗。玻璃除水是制作中红外玻璃的关键环节。讨论了羟基对重金属氧化物玻璃的光学、光谱学及光纤性质的影响,总结了近年来出现的中红外重金属氧化物玻璃除水方法(反应气氛除水法、鼓泡法、引入氟化物、氯化物除水等),对比分析了不同方法的除水效果和研究进展,对今后中红外重金属氧化物玻璃除水技术的现状与发展趋势进行了概括。
Abstract
The existence of —OH in the heavy oxide glasses leads to enormous loss in mid-infrared region due to worsening optical properties. Thus, removal of water in glass especially for mid- infrared application is a critical step. The effect of hydroxyl groups on the optical, spectroscopic and the optical fiber properties of the mid- infrared heavy metal oxide glass is discussed, the widely used dehydration techniques in recent years(reaction atmosphere process, budding dry gas, fluoride dehydration, chloride dehydration, etc.) are reviewed,their dehydration effects and the research progress are presented, and the status and the development direction of dehydration techniques in mid-infrared heavy oxide glasses are summarized.
参考文献

[1] Angela B Seddon. Potential for using mid- infrared light for non- invasive, early- detection of skin cancers in vivo[C].SPIE, 2013, 8576: 85760V.

[2] Moinuddin Hassan, Xin Tan, Elissa Welle, et al.. Fiber-optic Fourier transform infrared spectroscopy for remote labelfree sensing of medical device surface contamination[J]. Rev Sci Instrum, 2013, 84(5): 053101-053104.

[3] Christoph A Hecker, Thomas E L Smith, Beatriz Ribeiro da Luz, et al.. Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing[M]. Thermal Infrared Remote Sensing, 2013, 17: 43-67.

[4] William Green, Bart Kuyken, Xiaoping Liu, et al.. Mid- infrared silicon photonics[C]. Optical Fiber Communication Conference, 2013. OTh4I.7.

[5] Conghe Song. Optical remote sensing of forest leaf area index and biomass[J]. Progress in Physical Geography, 2013, 37(1): 98-113.

[6] Marta M Sewilo, B Whitney, M Meade, et al.. The mid- infrared view of star formation regions in the outer galaxy[C].American Astronomical Society Meeting #222, #313.09, 2013.

[7] J D T Smith, B T Draine, D A Dale, et al.. The mid- infrared spectrum of star- forming galaxies: Global properties of polycyclic aromatic hydrocarbon emission [J]. The Astrophysical Journal, 2007, 656(2): 770-791.

[8] 李平雪, 杨春, 姚毅飞, 等. 980 nm 光纤激光器的研究进展[J]. 激光与光电子学进展, 2013, 50(10): 100001.

    Li Pingxue, Yang Chun, Yao Yifei, et al.. Research process of 980 nm fiber laser[J]. Laser & Optoelectronics Progress,2013, 50(10): 100001.

[9] 张斌, 杨未强, 侯静, 等. 1.9~4.3 μm 全光纤中红外超连续谱光源[J]. 中国激光, 2013, 40(11): 1102013.

    Zhang Bin, Yang Weiqiang, Hou Jing, et al.. All-fiber mid-infrared supercontinuum source from 1.9 μm to 4.3 μm [J].Chinese J Lasers, 2013, 40(11): 1102013.

[10] 秦祖军, 周晓军, 伍浩成. 1550 nm 波段多波长拉曼光纤激光器实验研究[J]. 光学学报, 2010, 30(s1): s100207.

    Qin Zujun, Zhou Xiaojun, Wu Haocheng. Experimental investigation on multiwavelength Raman fiber laser at 1550 nm [J]. Acta Optica Sinica, 2010, 30(s1): s100207.

[11] Meisong Liao, Chitrarekha Chaudhari, Guanshi Qin, et al.. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation[J]. Opt Express, 2009, 17(14): 12174-12182.

[12] F Smektala, C Quemard, L Leneindre, et al.. Chalcogenide glasses with large non- linear refractive indices[J]. J Non-Cryst Solids, 1998, 239(1): 139-142.

[13] A M Heidt, J H V Price, C Baskiotis, et al.. Mid-infrared ZBLAN fiber supercontinuum source using picosecond diodepumping at 2 μm [J]. Opt Express, 2013, 21(20): 24281-24287.

[14] P Domachuk, N A Wolchover, M Cronin- Golomb, et al.. Over 4000 nm bandwidth of mid- IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Opt Express, 2008, 16(10): 7161-7168.

[15] M Bernier, V Fortin, N Caron, et al.. Mid- infrared chalcogenide glass Raman fiber laser[J]. Opt Lett, 2013, 38(2): 127-129.

[16] Xin He, Shanhui Xu, Can Li, et al.. 1.95 μm kHz- linewidth single- frequency fiber laser using self- developed heavily Tm3+-doped germanate glass fiber[J]. Opt Express, 2013, 21(18): 20800-20805.

[17] Pei-Wen Kuan, Kefeng Li, Guang Zhang, et al.. Compact broadband amplified spontaneous emission in Tm3 +- doped tungsten tellurite glass double-cladding single-mode fiber[J]. Opt Mater Express, 2013, 3(6): 723-728.

[18] Guoying Zhao, Ying Tian, Huiyan Fan, et al.. Efficient 2.7- μm emission in Er3 +- doped bismuth germanate glass pumped by 980-nm laser diode[J]. Chinese Optics Letters, 2012, 10(9): 091601.

[19] Shan Guan, Ying Tian, Yanyan Guo, et al.. Spectroscopic properties and energy transfer processes in Er3 +/Nd3 + codoped tellurite glass for 2.7- μm laser materials[J]. Chinese Optics Letters, 2012, 10(7): 071603.

[20] 范小康, 王欣, 李夏, 等. Er3+单掺与Er3+/Pr3+共掺碲酸盐玻璃的2.7 μm 光谱性质及能量转移过程[J]. 光学学报, 2014,34(1): 0116001.

    Fan Xiaokang, Wang Xin, Li Xia, et al.. 2.7 μm fluorescence and energy transfer process in Er3+-doped and Er3+/Pr3+ codoped tellurite glasses[J]. Acta Optica Sinica, 2014, 34(1): 0116001.

[21] D W Hewak, R S Deol, J Wang, et al.. Low phonon- energy glasses for efficient 1.3 μm optical fibre amplifiers[J].Electron Lett, 1993, 29(2): 237-239.

[22] Fuxi Gan. Optical properties of fluoride glasses: A review[J]. J Non-Cryst Solids, 1995, 184: 9-20.

[23] M D O′ Donnell, Kathleen Richardson, R Stolen, et al.. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization[J]. J Am Ceram Soc, 2007, 90(5): 1448-1457.

[24] Benjamin J Eggleton, Barry Luther- Davies, Kathleen Richardson. Chalcogenide photonics[J]. Nat Photonics, 2011, 5(3): 141-148.

[25] Guillaume Guery. Elaboration and Optimization of Tellurite-Based Materials for Raman Gain Application[D]. Clemson:Clemson University, 2013. 7-39.

[26] Adrian Carter, Bryce N Samson, Kanishka Tankala, et al.. Damage mechanisms in components for fiber lasers and amplifiers[C]. SPIE, 2004.5647: 561-571.

[27] N I Min′ko, V V Varavin. Effect of water on the structure and properties of glass (Review)[J]. Glass and Ceramics, 2007,64(3-4): 71-74.

[28] N Kitamura, K Fukumi, J Nishii, et al.. Effect of hydroxyl impurity on temperature coefficient of refractive index of synthetic silica glasses[J]. J Non-Cryst Solids, 2009, 355(45-47): 2216-2219.

[29] H A Hoppe, H Lutz, P Morys, et al.. Luminescence in Eu2 +- doped Ba2Si5N8: Fluorescence, thermoluminescence, and upconversion[J]. J Phys Chem Solids, 2000, 61(12): 2001-2006.

[30] W Fan, L Htein, B H Kim, et al.. Upconversion luminescence in bismuth-doped germano-silicate glass optical fiber[J].Optics & Laser Technology, 2013, 54: 376-379.

[31] C Perez- Rodriguez, M H Imanieh, L L Martin, et al.. Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics[J]. J Alloys Compd, 2013, 576: 363-368.

[32] Hrvoje Gebavi, Stefano Taccheo, Rolindes Balda, et al.. The effect of ZnF2 on the near- infrared luminescence from thulium doped tellurite glasses[J]. J Non-Cryst Solids, 2012, 358(12-13): 1497-1500.

[33] 孙杰, 聂秋华, 戴世勋, 等. OH-对Er3 +掺杂Ge-Ga-S-CsI 玻璃中红外荧光特性的影响[J]. 无机材料学报, 2011, 26(8):836-840.

    Sun Jie, Nie Qiuhua, Dai Shixun, et al.. Effect of OH- content on mid- infrared emission properties in Er3 +- doped Ge-Ga-S-CsI glasses[J]. Journal of Inorganic Materials, 2011, 26(8): 836-840.

[34] Giovanna Navarra, I Iliopoulos, V Militello, et al.. OH- related infrared absorption bands in oxide glasses[J]. J Non-Cryst Solids, 2005, 351(21): 1796-1800.

[35] 阿戈沃. 非线性光纤光学原理及应用[M]. 贾东方, 余震虹(译). 北京: 电子工业出版社, 2002.

    Govind Agrawal. Applications of Nonlinear Fiber Optics[M]. Jia Dongfang, Yu Zhenhong (trans.). Beijing: Pulishing House of Electronics Industry, 2002.

[36] 姜淳, 张俊洲, 卓敦水. BaO- P2O5 和R2O- BaO- P2O5 系统磷酸盐激光玻璃RAP 法除水的研究[J]. 中国激光, 1996, 23(2):182-186.

    Jiang Chun, Zhang Junzhou, Zhuo Dunshui. Investigation on removal of OH group in BaO- P2O5 and R2O- BaO- P2O5 system phosphate laser glasses by means of RAP method[J]. Chinese J Lasers, 1996, 23(2): 182-186.

[37] 杨钢锋, 赵三银, 邓再德, 等. 掺饵磷酸盐玻璃反应气氛法除水的研究[J]. 无机材料学报, 2005, 20(5): 1083-1088.

    Yang GangFeng, Zhao Sanyin, Deng Zaide, et al.. Removal of OH groups in Er3 +- doped phosphate glasses by reactive atmosphere process[J]. Journal of Inorganic Materials, 2005, 20(5): 1083-1088.

[38] Shiro Takahashi, S Shibata, Mituho Yasu. Low loss and low OH content soda- lime- silica glass fibre[J]. Electron Lett,1978, 14(5): 151-152.

[39] 于春雷, 戴世勋, 周刚, 等. OH-对掺铒碲酸盐玻璃光谱性质的影响[J]. 中国科学E辑, 2005, 35(9): 924-933.

    Yu Chunlei, Dai Shixun, Zhou Gang, et al.. Influence of OH- on the spectral properties in Er3 +-doped tellurite glass[J].Science in China Ser E Engineering & Materials Science, 2005, 35(9): 924-933.

[40] P F Wang, W N Li, B Peng, et al.. Effect of dehydration techniques on the fluorescence spectral features and OH absorption of heavy metals containing fluoride tellurite glasses[J]. J Non-Cryst Solids, 2012, 358(4): 788-793.

[41] H Ebendorff- Heidepriem, K Kuan, M R Oermann, et al.. Extruded tellurite glass and fibers with low OH content for mid-infrared applications[J]. Opt Mater Express, 2012, 2(4): 432-442.

[42] 任国仲, 陈宝玖, 杨艳民, 等. OH-对Er3+掺杂的亚碲酸盐氟氧化物玻璃上转换发光的影响[J]. 发光学报, 2006, 27(3): 325-330.

    Ren Guozhong, Chen Baojiu, Yang Yanmin, et al.. Effect of hydroxyl on the up-conversion luminescence of Er3+-doped oxyfluoride tellurite glasses [J]. Chinese Journal of Luminescence, 2006, 27(3): 325-330.

[43] A X Lin, A Ryasnyanskiy, J Toulouse. Fabrication and characterization of a water- free mid- infrared fluorotellurite glass[J]. Opt Lett, 2011, 36(5): 740-742.

[44] Xin Jiang, Joris Lousteau, Shaoxiong Shen, et al.. Fluorogermanate glass with reduced content of OH- groups for infrared fiber optics[J]. J Non-Cryst Solids, 2009, 355(37): 2015-2019.

[45] 吴家禄, 张军杰, 赖杨琼, 等. TeO2-ZnCl2-BaO-NaF 玻璃系统的结构及中红外透过特性的研究[J]. 无机材料学报, 2007, 22(2): 277-282.

    Wu Jialu, Zhang Junjie, Lai Yangqiong, et al.. Properties of structure and mid- infrared transmission in TeO2- ZnCl2-BaO-NaF glass system[J]. Journal of Inorganic Materials, 2007, 22(2): 277-282.

[46] Virginie Nazabal, S Todoroki, A Nukui, et al.. Oxyfluoride tellurite glasses doped by erbium: Thermal analysis,structural organization and spectral properties[J]. J Non-Cryst Solids, 2003, 325(1): 85-102.

[47] 江小平, 杨中民, 冯洲明. OH 对掺Er3+/Yb3+钡镓锗玻璃发光的影响及除水研究[J]. 无机材料学报, 2009, 24(2): 243-246.

    Jiang Xiaoping, Yang Zhongmin, Feng Zhouming. OH- removal and its effect on the fluorescent properties of Er3+/Yb3+ co-doped barium gallogermanate glass[J]. Journal of Inorganic Materimals, 2009, 24(2): 243-246.

[48] A Miguel, M Al-Saleh, J Azkargorta, et al.. Spectroscopic properties of Er3+-doped fluorotellurite glasses[J]. Opt Mater,2013, 35(11): 2039-2044.

[49] B Zhou, L L Tao, C Y Y Chan, et al.. Intense near-infrared emission of 1.23 μm in erbium-doped low-phonon-energy fluorotellurite glass[J]. Spectroc Acta Pt A-Molec Biomolec Spectr, 2013, 111: 49-53.

[50] Guihua Liao, Qiuping Chen, Jianjun Xing, et al.. Preparation and characterization of new fluorotellurite glasses for photonics application[J]. J Non-Cryst Solids, 2009, 355(7): 447-452.

[51] M D O′ Donnell, C A Miller, D Furniss, et al.. Fluorotellurite glasses with improved mid- infrared transmission[J]. JNon-Cryst Solids, 2003, 331(1-3): 48-57.

[52] Hrvoje Gebavi, Stefano Taccheo, Rolindes Balda, et al.. The effect of ZnF2 on the near- infrared luminescence from thulium doped tellurite glasses[J]. J Non-Cryst Solids, 2012, 358(12): 1497-1500.

[53] Huan Zhan, Aidong Zhang, Jianli He, et al.. 1.23 μm emission of Er/Pr- doped water- free fluorotellurite glasses[J].Appl Opt, 2013, 52(28): 7002-7006.

[54] I Savelii, F Desevedavy, J C Jules, et al.. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Opt Mater, 2013, 35(8): 1595-1599.

[55] J Massera, A Haldeman, J Jackson, et al.. Processing of tellurite-based glass with low OH content[J]. J Am Ceram Soc,2011, 94(1): 71-77.

[56] L G Van Uitert, S H Wemple. ZnCl2 glass: A potential ultralow-loss optical fiber material[J]. Appl Phys Lett, 1978, 33(1):57-59.

[57] Xian Feng, Jindan Shi, Martha Segura, et al.. Halo- tellurite glass fiber with low OH content for 2- 5 μm mid- infrared nonlinear applications[J]. Opt Express, 2013, 21(16): 18949-18954.

[58] V V Dorofeev, A N Moiseev, M F Churbanov, et al.. High-purity TeO2-WO3-La2O3, Bi2O3 glasses for fiber-optics[J]. Opt Mater, 2011, 33(12): 1911-1915.

[59] Jiang Xin, J Lousteau, A Jha. Raw materials purification for the development of high performance infrared transmitting germanate glass fibres[J]. Glass Technol, 2009, 50(6): 315-318.

岳静, 薛天锋, 李夏, 廖梅松. 中红外重金属氧化物玻璃羟基的去除研究进展[J]. 激光与光电子学进展, 2014, 51(9): 090002. Yue Jing, Xue Tianfeng, Li Xia, Liao Meisong. Research Progress of Dehydration Techniques in Mid-Infrared Heavy Metal Oxide Glass[J]. Laser & Optoelectronics Progress, 2014, 51(9): 090002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!