激光与光电子学进展, 2021, 58 (3): 0300005, 网络出版: 2021-03-12   

光纤隐失波生化传感研究进展 下载: 645次

Research Advancements in Optical Fiber Evanescent Wave Biochemical Sensing
作者单位
1 武汉理工大学硅酸盐建筑材料国家重点实验室,湖北 武汉 430070
2 华南理工大学发光材料与器件国家重点实验室,广东 广州 510640
引用该论文

赵旭东, 许银生, 章向华, 赵修建. 光纤隐失波生化传感研究进展[J]. 激光与光电子学进展, 2021, 58(3): 0300005.

Zhao Xudong, Xu Yinsheng, Zhang Xianghua, Zhao Xiujian. Research Advancements in Optical Fiber Evanescent Wave Biochemical Sensing[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300005.

参考文献

[1] Xiao Z Y, Luo W Y, Wen J X, et al. Defect induced by heated treatment in silica fiber material[M]∥Xiao Z Y, Luo W Y, Wen J X, et al. Multi-functional materials and structures engineering, ICMMSE 2011. Advanced Materials Research, Stafa-Zurich: Trans Tech Publications Ltd., 2011, 304: 160-164.

[2] Paul P H, Kychakoff G. Fiber-optic evanescent field absorption sensor[J]. Applied Physics Letters, 1987, 51(1): 12-14.

[3] 尹冬梅, 戴世勋, 王训四, 等. 红外硫系玻璃光纤在传感领域的研究进展[J]. 激光与光电子学进展, 2013, 50(2): 020010.

    Yin D M, Dai S X, Wang X S, et al. Research progress of infrared chalcogenide glass fibers in sensing fields[J]. Laser & Optoelectronics Progress, 2013, 50(2): 020010.

[4] Ahmad M, Hench L L. Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers[J]. Biosensors and Bioelectronics, 2005, 20(7): 1312-1319.

[5] Shriver-Lake L C, Anderson G P, Golden J P, et al. The effect of tapering the optical fiber on evanescent wave measurements[J]. Analytical Letters, 1992, 25(7): 1183-1199.

[6] Gupta B D, Dodeja H, Tomar A K. Fibre-optic evanescent field absorption sensor based on a U-shaped probe[J]. Optical and Quantum Electronics, 1996, 28(11): 1629-1639.

[7] Khijwania S K, Srinivasan K L, Singh J P. An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity[J]. Sensors and Actuators B: Chemical, 2005, 104(2): 217-222.

[8] Russell P S J. Photonic-crystal fibers[J]. Journal of Lightwave Technology, 2006, 24(12): 4729-4749.

[9] 王伟, 侯蓝田. 光子晶体光纤的现状和发展[J]. 激光与光电子学进展, 2008, 45(2): 43-58.

    Wang W, Hou L T. Present situation and future development in photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2008, 45(2): 43-58.

[10] 王超, 孙富君, 付中原, 等. 光子晶体微纳传感技术的理论与实验研究进展[J]. 光学学报, 2018, 38(3): 0328003.

    Wang C, Sun F J, Fu Z Y, et al. Research progresses on theory and experiments of photonic crystal micronano sensing technology[J]. Acta Optica Sinica, 2018, 38(3): 0328003.

[11] 彭星玲, 李兵, 李玉龙. 微纳光纤布拉格光栅折射率与浓度传感器研究进展[J]. 激光与光电子学进展, 2018, 55(12): 120010.

    Peng X L, Li B, Li Y L. Research progress of refractive index and concentration sensors based on micro-nanofiber Bragg grating[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120010.

[12] 苑立波. 多芯光纤特性及其传感应用[J]. 激光与光电子学进展, 2019, 56(17): 170612.

    Yuan L B. Multi-core fiber characteristics and its sensing applications[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170612.

[13] Nikodem M, Krzempek K, Dudzik G, et al. Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm[J]. Optics Express, 2018, 26(17): 21843-21848.

[14] Wang L L, Ma W Q, Zhang P Q, et al. Mid-infrared gas detection using a chalcogenide suspended-core fiber[J]. Journal of Lightwave Technology, 2019, 37(20): 5193-5198.

[15] Mustapha Kamil Y, Abu Bakar M H, Mustapa M A, et al. Label-free Dengue E protein detection using a functionalized tapered optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2018, 257: 820-828.

[16] Kamil Y M, Al-Rekabi S H, Yaacob M H, et al. Detection of dengue using PAMAM dendrimer integrated tapered optical fiber sensor[J]. Scientific Reports, 2019, 9(1): 13483.

[17] Mustapa M A, Bakar M H A, Kamil Y M, et al. Bio-functionalized tapered multimode fiber coated with dengue virus NS1 glycoprotein for label free detection of anti-dengue virus NS1 IgG antibody[J]. IEEE Sensors Journal, 2018, 18(10): 4066-4072.

[18] Sun D D, Sun L P, Guo T, et al. Label-free thrombin detection using a tapered fiber-optic interferometric aptasensor[J]. Journal of Lightwave Technology, 2019, 37(11): 2756-2761.

[19] Li X K, Zhang Y L, Xue B, et al. A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood[J]. Biosensors and Bioelectronics, 2017, 92: 517-522.

[20] Yao B C, Wu Y, Webb D J, et al. Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection[J]. IEEE Photonics Technology Letters, 2015, 27(22): 2399-2402.

[21] Chiang C Y, Huang T T, Wang C H, et al. Fiber optic nanogold-linked immunosorbent assay for rapid detection of procalcitonin at femtomolar concentration level[J]. Biosensors and Bioelectronics, 2020, 151: 111871.

[22] Zhu X Y, Wang R Y, Xia K D, et al. Nucleic acid functionalized fiber optic probes for sensing in evanescent wave: optimization and application[J]. RSC Advances, 2019, 9(4): 2316-2324.

[23] Qiu H W, Gao S S, Chen P X, et al. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film[J]. Optics Communications, 2016, 366: 275-281.

[24] Komanec M, Nemecek T, Vidner P M, et al. Structurally-modified tapered optical fiber sensors for long-term detection of liquids[J]. Optical Fiber Technology, 2019, 47: 187-191.

[25] Xiong Y, Wang Q, Duan M, et al. Real-time monitoring of azo dye interfacial adsorption at silica-water interface by total internal reflection-induced surface evanescent wave[J]. Langmuir, 2018, 34(26): 7612-7623.

[26] Li B L, Li D R, Chen J H, et al. Hollow core micro-fiber for optical wave guiding and microfluidic manipulation[J]. Sensors and Actuators B: Chemical, 2018, 262: 953-957.

[27] Lü R, Li J, Hu H F, et al. Miniature refractive index fiber sensor based on silica micro-tube and Au micro-sphere[J]. Optical Materials, 2017, 72: 661-665.

[28] Yap S H K, Chan K K, Zhang G, et al. Carbon dot-functionalized interferometric optical fiber sensor for detection of ferric ions in biological samples[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28546-28553.

[29] Pan Z, Feng J, Hu X, et al. High sensitivity fiber sensor for measurement of Cd2+concentration in aqueous solution based on reflective Mach-Zehnder interference with temperature calibration[J]. Optics Express, 2019, 27(22): 32621-32629.

[30] Pathak A K, Chaudhary D K, Singh V K. Broad range and highly sensitive optical pH sensor based on hierarchical ZnO microflowers over tapered silica fiber[J]. Sensors and Actuators A: Physical, 2018, 280: 399-405.

[31] 陈浩, 刘月明, 邹建宇, 等. 光纤水质检测技术的研究现状与发展趋势[J]. 激光与光电子学进展, 2015, 52(3): 030006.

    Chen H, Liu Y M, Zou J Y, et al. Research status and development trends of fiber optical technology for water quality monitoring[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030006.

[32] Fu H W, Wang Q Q, Ding J J, et al. Fe2O3 nanotube coating micro-fiber interferometer for ammonia detection[J]. Sensors and Actuators B: Chemical, 2020, 303: 127186.

[33] Korposh S, Kodaira S, Selyanchyn R, et al.Porphyrin-nanoassembled fiber-optic gas sensor fabrication: Optimization of parameters for sensitive ammonia gas detection[J]. Optics & Laser Technology, 2018, 101: 1-10.

[34] Jali M H, Rahim H R A, Johari M A M, et al. Formaldehyde sensing using ZnO nanorods coated glass integrated with microfiber[J]. Optics & Laser Technology, 2019, 120: 105750.

[35] Sharifpour-Boushehri S, Hosseini-Golgoo S M, Sheikhi M H. A low cost and reliable fiber optic ethanol sensor based on nano-sized SnO2[J]. Optical Fiber Technology, 2015, 24: 93-99.

[36] Compton D A C, Hill S L, Wright N A, et al. In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber[J]. Applied Spectroscopy, 1988, 42(6): 972-979.

[37] Bureau B, Zhang X H, Smektala F, et al. Recent advances in chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 2004, 345/346: 276-283.

[38] Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2.0‒16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 2017, 11(2): 1700005.

[39] Sharma A K, Gupta J. Fiber optic sensor's performance enhancement by tuning NIR wavelength, polarization, and 2D material[J]. IEEE Photonics Technology Letters, 2018, 30(12): 1087-1090.

[40] Sharma A K, Gupta J. Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood[J]. Optical Fiber Technology, 2018, 41: 125-130.

[41] Keirsse J, Boussard-Plédel C, Loreal O, et al. Chalcogenide glass fibers used as biosensors[J]. Journal of Non-Crystalline Solids, 2003, 326/327: 430-433.

[42] Wu Z H, Xu Y S, Qi D F, et al. Progress in preparation and applications of Te-As-Se chalcogenide glasses and fibers[J]. Infrared Physics & Technology, 2019, 102: 102981.

[43] Anty R, Morvan M, Le Corvec M, et al. The mid-infrared spectroscopy: a novel non-invasive diagnostic tool for NASH diagnosis in severe obesity[J]. JHEP Reports, 2019, 1(5): 361-368.

[44] Su J X, Su J X, Dai S X, et al. Optimized Ge-As-Se-Te chalcogenide glass fiber sensor with polydopamine-coated tapered zone for the highly sensitive detection of p-xylene in waters[J]. Optics Express, 2020, 28(1): 184-193.

[45] Velmuzhov A P, Shiryaev V S, Sukhanov M V, et al. Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis[J]. Optical Materials, 2018, 75: 525-532.

[46] Romanova E A, Korsakova S, Komanec M, et al. Multimode chalcogenide fibers for evanescent wave sensing in the mid-IR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 289-295.

[47] Korsakova S, Romanova E, Velmuzhov A, et al. Peculiarities of the mid-infrared evanescent wave spectroscopy based on multimode chalcogenide fibers[J]. Journal of Non-Crystalline Solids, 2017, 475: 38-43.

[48] Velmuzhov A P, Sukhanov M V, Shiryaev V S, et al. Preparation and investigation of [GeSe4]100-xIx glasses as promising materials for infrared fiber sensors[J]. Optical Materials, 2016, 60: 438-442.

[49] Yang C F, Wang X M, Su J X, et al. Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber[J]. Journal of Non-Crystalline Solids, 2018, 500: 377-381.

[50] Chahal R, Starecki F, Boussard-Plédel C, et al. Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers[J]. Sensors and Actuators B: Chemical, 2016, 229: 209-216.

[51] Velmuzhov A P, Sukhanov M V, Kotereva T V, et al. Optical fibers based on special pure Ge20Se80 and Ge26As17Se25Te32 glasses for FEWS[J]. Journal of Non-Crystalline Solids, 2019, 517: 70-75.

[52] Romanova E A, Korsakova S V, Rozhnev A G, et al. Chalcogenide fiber loop probe for the mid-IR spectroscopy of oil products[J]. Optics Express, 2020, 28(4): 5267-5272.

[53] Lucas P, Bureau B. Selenide glass fibers for biochemical infrared sensing[M]∥Applications of Chalcogenides: S, Se, and Te. Cham: Springer International Publishing, 2016: 285-319.

[54] Ballato J, Hawkins T, Foy P, et al. Silicon optical fiber[J]. Optics Express, 2008, 16(23): 18675-18683.

赵旭东, 许银生, 章向华, 赵修建. 光纤隐失波生化传感研究进展[J]. 激光与光电子学进展, 2021, 58(3): 0300005. Zhao Xudong, Xu Yinsheng, Zhang Xianghua, Zhao Xiujian. Research Advancements in Optical Fiber Evanescent Wave Biochemical Sensing[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!