光学学报, 2017, 37 (1): 0101003, 网络出版: 2017-01-13   

气溶胶空间非均匀性对近红外辐射传输的影响分析

Study on the Effect of Inhomogeneous Aerosol Fields on Radiative Transfer Process in Near-Infrared Band
作者单位
1 解放军理工大学气象海洋学院, 江苏 南京 211101
2 中国人民解放军77560部队, 西藏 拉萨 851501
摘要
为了解气溶胶空间非均匀性对近红外辐射传输过程的影响, 构造了典型非均匀气溶胶场, 采用辐射传输模式球谐离散坐标法(SHDOM)模拟了对应情形下的漫射光强、偏振特性以及辐射通量密度, 定量分析了将非均匀气溶胶场等效为均匀场造成的模拟误差。研究结果表明, 气溶胶非均匀场对辐射传输过程影响显著, 且它对漫射光偏振辐亮度的影响大于它对辐亮度的影响, 其中气溶胶空间非均匀性造成的辐亮度及偏振辐亮度模拟误差分别可达9.8%和80%。气溶胶水平非均匀性主要影响漫射光辐亮度及偏振辐亮度模拟误差的空间分布特征, 垂直不均匀性基本不改变漫射光模拟误差的空间分布特征, 但它对辐射传输过程的影响明显大于水平不均匀性。随着气溶胶浓度的增加, 气溶胶非均匀性造成的模拟误差整体降低。从量级上, 气溶胶空间非均匀性对辐射通量密度的影响明显弱于漫射光辐亮度和偏振辐亮度, 多数情形下, 其模拟误差小于5%, 且该误差随高度的变化呈特定分布特征。可为平面平行大气辐射传输模式适用范围的确定, 气溶胶空间非均匀性导致的遥感误差的评估提供一定参考。
Abstract
To investigate the influence of inhomogeneous aerosol field on radiative transfer process in near-infrared band, representative inhomogeneous aerosol fields are constructed, and the radiance, polarized radiance and flux density of the diffuse light are simulated by the radiative transfer model spectral harmonics discrete ordinary method (SHDOM) for different aerosol fields. In addition, the simulation error caused by taking the inhomogeneous aerosol fields as plane-parallel ones is analyzed numerically as well. Simulation results indicate that, inhomogeneous distribution of the aerosol particles has significant influence on the radiative transfer, and the simulation error of the polarized radiance caused by the inhomogeneity of the aerosol field is higher than that of radiance, where the simulation error of radiance and polarized radiance can reach 9.8% and 80%, respectively. Horizontal inhomogeneity of the aerosol field has a great influence on the simulation error distribution of radiance and polarized radiance, while the vertical inhomogeneity has a more notable effect on the radiative transfer process and has no significant influence on the distribution. As the aerosol concentration increases, simulation error caused by the inhomogeneity of aerosol fields gradually decreases. The simulation error of flux density is smaller than that of radiance and polarized radiance in magnitude, which is less than 5% for most case. It is also found that the variation of the simulation error with height shows specific distribution characteristics. This work will be helpful for both the determination of applicable scope of the plane-parallel atmospheric radiative transfer models and the estimation of error caused by the aerosol field inhomogeneity in remote sensing process.
参考文献

[1] Liou K N. Anintroduction to atmospheric radiation[M]. San Diego: Academic Press, 2003.

[2] 胡 帅, 高太长, 刘 磊. 非球形气溶胶粒子散射特性及其等效Mie散射误差分析[J]. 气象科学, 2014, 34(6): 612-619.

    Hu Shuai, Gao Taichang, Liu Lei. Analysis on scattering characeristics and equivalent Mie scattering errors of non-spherical atmospherical aerosols[J]. Journal of the Meteorological Sciences, 2014, 34(6): 612-619.

[3] Cheng T, Gu X, Xie D, et al. Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing[J]. Atmospheric Measurement Techniques, 2012, 5(3): 501-516.

[4] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012: 181-271.

    Yao Ruizhong. Modern Atmospheric Optics[M]. Beijing: Science Press, 2012: 181-271.

[5] Deuzé J L, Goloub P, Herman M,et al. Estimate of the aerosol properties over the ocean with POLDER[J]. Journal of the Geophysical Research, 2000, 105(D12): 15329-15346.

[6] 胡 帅, 高太长, 刘 磊, 等. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真[J]. 物理学报, 2015, 64(9): 094201.

    Hu Shuai, Gao Taichang, Liu Lei, et al. Simulation of radiation transfer properties of polarized light in non-spherical aerosol using Monte Carlo method[J]. Acta Physica Sinica, 2015, 64(9): 094201.

[7] Liou K N, Takano Y. Light scattering by nonspherical particles: remote sensing and climatic implications[J]. Atmospheric Research, 1994, 31(4): 271-298.

[8] Hu S, Gao T C, Li H, et al. Effect of atmospheric refraction on radiative transfer in visible and near-infrared band: model development, validation, and applications[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(5): 2349-2368.

[9] 程天海, 顾行发, 余 涛, 等. 水云多角度偏振辐射特性研究[J]. 红外与毫米波学报, 2009, 28(4): 267-271.

    Cheng Tianhai, Gu Xingfa, Yu Tao, et al. Multi-angular polarized radiation characteristics of water clouds[J]. Journal of Infrared and Millimeter Waves, 2009, 28(4): 267-271.

[10] Stamnes K, Tsay S, Wiscombe W, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media[J]. Applied Optics, 1988, 27(12): 2502-2509.

[11] de Haan J F, Bosma P B, Hovenier J W. The adding method for multiple scattering calculations of polarized light[J]. Astronomy and Astrophysics, 1987, 183(2): 371-391.

[12] Evans K F, Stephens G L. A new polarized atmospheric radiative transfer model[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1991, 46(5): 413-423.

[13] Hovenier J W. Multiple scattering of polarized light in planetary atmospheres[J]. Astronomy and Astrophysics, 1971, 13(1): 7-29.

[14] Schulz F M, Stamnes K. Angular distribution of the Stokes vector in a plane-parallel vertically inhomogeneous medium in the vector discrete ordinate radiative transfer (VDISORT) model[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 65(4): 609-620.

[15] Min Q L, Duan M Z. A successive order of scattering model for solving vector radiative trnasfer in the atmosphere[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87(3-4): 243-259.

[16] Vaillon R, Wong B T, Mengü M P. Polarized radiative transfer in a particle-laden semi-transparent medium via a vector Monte Carlo method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 84(4): 383-394.

[17] Ramella-Roman J C, Prahl S A, Jacques S L. Three Monte Carlo programs of polarized light transport into scattering media: part I[J]. Optics Express, 2005, 13(12): 4420-4438.

[18] Ramella-Roman J C, Prahl S A, Jacques S L. Three Monte Carlo programs of polarized light transport into scattering media: part II[J]. Optics Express, 2005, 13(25): 10392-10405.

[19] 胡 帅, 高太长, 李 浩, 等. 大气折射对可见近红外波段辐射传输的影响分析[J]. 光学学报, 2016, 36(6): 0601005.

    Hu Shuai, Gao Taichang, Li Hao, et al. Analysis on impact of atmospheric refraction on radiative transfer process at visible and infrared band[J]. Acta Optica Sinica, 2016, 36(6): 0601005.

[20] 郭 红, 顾行发, 谢东海, 等. 大气气溶胶偏振遥感研究进展[J]. 光谱学与光谱分析, 2014, 34(7): 1873-1880.

    Guo Hong, Gu Xingfa, Xie Donghai, et al. A review of atmospheric aerosol research by using polarization remote sensing[J]. Spectroscpoy and Spectral Analysis, 2014, 34(7): 1873-1880.

[21] 胡 帅, 高太长, 李 浩, 等. 大气折射对可见光波段辐射传输特性的影响[J]. 物理学报, 2015, 64(18): 184203.

    Hu Shuai, Gao Taichang, Li Hao, et al. Influence of atmospheric refraction on radiative transfer at visible light band[J]. Acta Physica Sinica, 2015, 64(18): 184203.

[22] Ricchiazzi P, Yang S R, Gautier C, et al. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth′s atmosphere[J]. Bulletin of the American Meteorological Society, 1998, 79(10): 2101-2114.

[23] Ben X, Yi H L, Tan H P. Polarized radiative transfer in an arbitrary multilayer semitransparent medium[J]. Applied Optics, 2014, 53(7): 1427-1441.

[24] Mayer B. Radiative transfer in the cloudy atmosphere[C]. The European Physical Journal Conferences, 2009, 1: 75-99.

[25] 张 肃, 战俊彤, 白思克, 等. 烟雾浓度对偏振光传输特性的影响[J]. 光学学报, 2016, 36(7): 0729001.

    Zhang Su, Zhan Juntong, Bai Sike, et al. Influence of smoke concentration on transmission characteristics of polarized light[J]. Acta Optica Sinica, 2016, 36(7): 0729001.

[26] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. Journal of Geophysical Research, 2001, 106(D5): 4913-4926.

[27] Evans K F. Thespherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer[J]. Journal of Atmospheric Sciences, 1998, 55(3): 429-446.

[28] Cahalan R F, Oreopoulos L, Marshak A, et al. The I3RC bringing together the most advanced radiative transfer tools for cloudy atmospheres[J]. Bulletin of the American Meteorological Society, 2005, 86(9): 1275-1293.

[29] 韩 永, 范 伟, 饶瑞中, 等. 可见光波段气溶胶标高的实验研究[J]. 大气与环境光学学报, 2006, 1(1): 33-40.

    Han Yong, Fan Wei, Rao Ruizhong, et al. Aerosol scale height of visible light-wave in experimentation study[J]. Journal of Atmospheric and Environmental Optics, 2006, 1(1): 33-40.

陈鸣, 胡帅, 高太长, 李浩, 程天际, 刘磊, 喻学峰. 气溶胶空间非均匀性对近红外辐射传输的影响分析[J]. 光学学报, 2017, 37(1): 0101003. Chen Ming, Hu Shuai, Gao Taichang, Li Hao, Cheng Tianji, Liu Lei, Yu Xuefeng. Study on the Effect of Inhomogeneous Aerosol Fields on Radiative Transfer Process in Near-Infrared Band[J]. Acta Optica Sinica, 2017, 37(1): 0101003.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!