中国激光, 2017, 44 (10): 1001004, 网络出版: 2017-10-18   

强激光作用下导光镜面温度场的影响因素分析

Influence Factors Analysis of Temperature Field of Light Guide Mirror Surface Under High Power Laser
孟令武 1,2,*邵帅 1
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为降低导光镜面激光辐照区的温度梯度, 利用有限体积法求解三维湍流传热方程, 得到激光辐照区温度场分布, 研究了矩形流道尺寸参数、冷却液的浓度与流速等因素对导光镜面平均温升和温升差的影响, 并设计了双流道结构。结果表明, 对于单流道, 镜面辐照区温度场不随其几何中心呈对称分布, 最高温度点位于流道下游; 增大流道截面尺寸和冷却液流速可以提高换热效果; 流道不同面之间的温度分布并不相同; 乙二醇冷却液浓度越高, 换热效果越差; 相比于单流道结构, 双流道结构的平均温升降低幅度最大可达17.79%, 温升差降低幅度最大可达67.97%。
Abstract
In order to reduce the temperature gradient of the laser irradiation zone of the light guide mirror surface, the three-dimensional steady turbulent flow and heat transfer equations are solved with the finite volume method, and the temperature field of the laser irradiation zone is analyzed. The effects of rectangular channel size, concentration and velocity of coolant on average temperature rise and temperature rise difference of the light guide mirror surface are studied. Accordingly, a dual-channel structure is designed. Results show that for the single channel, the temperature field of the irradiation zone is not symmetrical around the geometric center and the highest temperature point is located at the downstream of the irradiation zone. The heat transfer efficiency can be improved by the increase of the cross-section size and the coolant velocity. In addition, the temperature distributions between the different surfaces of the channels are not the same. The higher the concentration of the ethylene glycol coolant, the worse the heat transfer effect. The average temperature and the temperature rise difference of the dual-channel structure can be reduced by up to 17.79% and 67.97%, respectively, compared with those of the single-channel structure.
参考文献

[1] 王小林, 周 朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、趋势与挑战[J]. 中国激光, 2017, 44(2): 0201001.

    Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese J Lasers, 2017, 44(2): 0201001.

[2] 李 源, 陈治平, 王鹏华. 高能激光武器现状及发展趋势[J]. 红外与激光工程, 2008, 37(S3): 371-374.

    Li Yuan, Chen Zhiping, Wang Penghua. Development status and prospect of high-power laser beam weapons[J]. Infrared and Laser Engineering, 2008, 37(S3): 371-374.

[3] Endo M, Nagatomo S, Takeda S, et al. High-efficiency operation of chemical oxygen-iodine laser using nitrogen as buffer gas[J]. IEEE Journal of Quantum Electronics, 1998, 34(3): 393-398.

[4] 汪道友. 激光核聚变快点火新方案研究获重要进展[J]. 强激光与粒子束, 2006, 18(2): 324-324.

[5] 闫岸如, 杨恬恬, 王燕灵, 等. 钨粉粒度和形状对选区激光熔化W-x Cu成形与显微组织的影响[J]. 中国激光, 2016, 43(2): 0203007.

    Yan Anru, Yang Tiantian, Wang Yanling, et al. Effect of tungsten powder particle size and shape on consolidation and microstructure of W-x Cu composites by selective laser melting[J]. Chinese J Lasers, 2016, 43(2): 0203007.

[6] 杜燕贻, 安建祝, 束小建. 腔镜热变形对非稳腔光场特性的影响[J]. 强激光与粒子束, 2008, 20(8): 1333-1338.

    Du Yanyi, An Jianzhu, Shu Xiaojian. Effect of thermal distortion of mirror on characteristics of laser beam in unstable resonator[J]. High Power Laser and Particle Beams, 2008, 20(8):1333-1338.

[7] 刘泽金, 周 朴, 许晓军. 高能激光光束质量通用评价标准的探讨[J]. 中国激光, 2009, 36(4): 773-778.

    Liu Zejin, Zhou Pu, Xu Xiaojun. Study on universal standard for evaluating high energy beam quality[J]. Chinese J Lasers, 2009, 36(4): 773-778.

[8] 胡小川, 彭家琪, 张 彬. 变形镜热形变及其对光束质量的影响分析[J]. 中国激光, 2015, 42(1): 0102003.

    Hu Xiaochuan, Peng Jiaqi, Zhang Bin. Thermal distortion of deformable mirror and its influence on beam quality[J]. Chinese J Lasers, 2015, 42(1): 0102003.

[9] Tuckerman D B, Pease R F W. High performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.

[10] Anthony A F M, Hopkins A K. Actively cooled silicon mirrors[C]. SPIE, 1982, 279: 196-203.

[11] 彭玉峰, 程祖海. 强激光反射镜基体材料的热畸变特性有限元分析[J]. 强激光与粒子束, 2005, 17(1): 5-8.

    Peng Yufeng, Cheng Zuhai. Finite element analyses of thermal distortions of mirror substrates for high power lasers[J]. High Power Laser and Particle Beams, 2005, 17(1): 5-8.

[12] 余亮英, 朱海红, 程祖海, 等. 强激光反射镜体结构对镜面热变形的影响[J]. 华中科技大学学报(自然科学版), 2007, 35(6): 108-110.

    Yu Liangying, Zhu Haihong, Cheng Zuhai, et al. Analysis of the effects of mirror structure on mirror surface thermo-deformation using finite element methods[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2007, 35(6): 108-110.

[13] 胡攀攀, 朱海红, 左都罗. 流道截面参量对微通道水冷镜热变形的影响[J]. 中国激光, 2011, 38(11): 1102001.

    Hu Panpan, Zhu Haihong, Zuo Duluo. Influence of channel parameters on thermal-deformation of microchannel mirror[J]. Chinese J Lasers, 2011, 38(11): 1102001.

[14] Hu P P, Zhu H H, He C W, et al. Heat transfer and thermal deformation characteristics of liquid-cooled laser mirror[J]. Advances in Mechanical Engineering, 2015, 6(1): 749065.

[15] Hu P P, Zhu H H, He C W. Optimization design of water-cooled mirror for low thermal deformation[J]. Applied Thermal Engineering, 2014, 73(1): 596-605.

[16] Peng Y F, Cheng Z H, Zhang Y N, et al. Temperature distributions and thermal deformations of mirror substrates in laser resonators[J]. Applied Optics, 2001, 40(27): 4824-4830.

[17] 杜少军. 高能激光器及其发射系统的热变形研究[D]. 长沙: 国防科学技术大学, 2001.

    Du Shaojun. Study on thermal deformation in high energy laser and transmission system[D]. Changsha: National University of Defense Technology, 2001.

[18] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.

    Yang Shiming, Tao Wenquan. Heat transfer[M]. Beijing: Higher Education Press, 2006.

[19] 张也影. 流体力学[M]. 北京: 高等教育出版社, 1999.

    Zhang Yeying. Fluid mechanics[M]. Beijing: Higher Education Press, 1999.

孟令武, 邵帅. 强激光作用下导光镜面温度场的影响因素分析[J]. 中国激光, 2017, 44(10): 1001004. Meng Lingwu, Shao Shuai. Influence Factors Analysis of Temperature Field of Light Guide Mirror Surface Under High Power Laser[J]. Chinese Journal of Lasers, 2017, 44(10): 1001004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!