光子学报, 2013, 42 (8): 973, 网络出版: 2013-09-25   

基于聚束逆合成孔径激光成像雷达组的三维目标重构的研究

Research on Threedimensional Target Reconstruction Based on Spotlight Mode Inverse Synthetic Aperture Imaging Ladar Group
作者单位
长春理工大学 光电工程学院, 长春 130000
摘要
为了在聚束逆合成孔径激光雷达成像中获得三维重构需要的高程信息量,设计了基于聚束逆合成孔径激光成像雷达组的目标重构算法.系统在等边三角形三个顶点上分布安置逆合成孔径激光雷达,根据位置和倾角的关系,由另两个激光雷达提供三维目标重构的高程信息.计算了被测目标任意方向进入系统探测区域后,三个逆合成孔径激光雷达对应的高程函数表达式.通过仿真实验可知,被测目标的速度对高程函数没有显著影响.而逆合成孔径激光雷达与目标的角度关系对高程信息变化有显著贡献,在采用不同位置高程信息融合的过程中,选择逆合成孔径激光雷达的分布方式对回波数据的利用率有影响.由于不同角度变化产生了连续变化高程信息,利用该方法可以有效地通过获取高程信息重构目标三维图像.
Abstract
In order to obtain the information of elevation which threedimensional reconstruction needs in the spotlight mode inverse synthetic aperture ladar imaging, a target reconstruction algorithm was designed based on spotlight mode inverse synthetic aperture imaging ladar groups. The systems were placed inverse synthetic aperture ladar in the three vertices of an equilateral triangle. According to the relationship between the position and the inclination angle, the elevation information for reconstructing threedimensional target could be provided by another two ladars. The elevation functions of three inverse synthetic aperture ladars were calculated when the measured target flied into detects area of the system in any direction. Simulation result shows that the speed of the measured target has no significant effect on the elevation function. Angular relationships of inverse synthetic aperture ladar and target have a significant contribution to the changes in elevation information. In the process of information fusion for different position elevation, the selection of distributed manner for inverse synthetic aperture ladar impacted the utilization of echo data. Because different angles change produces continuous changes in elevation information, this method can effectively reconstruct target threedimensional image by elevation information obtained.
参考文献

[1] 吕旭光, 郝士琦, 冷蛟锋,等. 基于自适应窗的合成孔径激光雷达联合时频成像方法[J]. 光子学报, 2012, 41(5): 575-581.

    Lv Xuguang, HAN Shiqi, LENG Jiaofeng, et al. Combined timefrequency imaging method of SAL based on adaptive windowing[J]. Acta Photonica Sinica, 2012, 41(5): 575-581.

[2] 瞿福琪, 胡以华, 冷蛟峰,等. 基于啁啾脉冲的反射层析激光雷达成像[J]. 光电工程, 2012, 39(4): 55-59.

    QU Fuqi, HU Yihua, LENG Jiaofeng, et al. Reflective tomography Lidar imaging based on chirped pulse signal[J]. OptoElectronic Engineering, 2012, 39(4): 55-59.

[3] 金晓峰, 严毅, 孙建锋,等. 基于角度-多普勒分辨的反射层析激光成像雷达研究[J]. 光学学报, 2012, 32(8): 1-7.

    JIN Xiaofeng, YAN Yi, SUN Jianfeng, et al. AngleDoppler resolved tomography laser imaging radar[J]. Acta Optica Sinica, 2012, 32(8): 1-7.

[4] MATSON C L, MOSLEY D E. Reflective tomography reconstruction of satellite featuresfield results[J]. Applied Optics, 2011, 40(14): 2290-2296.

[5] 严毅, 金晓峰, 孙建锋,等. 聚束非相干合成孔径激光成像雷达研究[J]. 光学学报, 2012, 32(2): 1-8.

    YAN Yi, JIN Xiaofeng, SUN Jianfeng, et al. Research of spotlight mode incoherently synthetic aperture imaging lidar[J]. Acta Optica Sinica, 2012, 32(2): 1-8.

[6] 张文睿,曾晓东,满祥坤.激光外差实验研究[J].红外与激光工程,2008,37(2):146-147.

    ZHANG Wenrui, ZENG Xiaodong, MAN Xiangkun. Study on optical heterodyne detection[J]. Infrared and Laser Engineering, 2008, 37(2): 146-147.

[7] SHI Guangming, LIN Jie, CHEN Xuyang, et al. UWB echo signal detection with ultralow rate sampling based on compressed sensing[J]. IEEE Trans on Circuits and SystemsII: Express briefs, 2008, 55(4): 379-383.

[8] 刘立人.非相干合成孔径激光成像雷达体系结构和算法[J]. 光学学报, 2010, 30(1): 109-116.

    LIU Liren. Incoherently synthetic aperture imaging Ladar: architecture and algorithm[J]. Acta Optica Sinica, 2010, 30(1): 109-116.

[9] 刑孟道,郭亮,谭于,等.合成孔径成像激光雷达实验系统研究[J].红外与激光工程,2009,38(2):128-132.

    XING Mengdao, GUO Liang, TANG Yu, et al. Design on the experiment optical system of synthetic aperture imaging lidai[J]. Infrared and Laser Engineering, 2009, 38(2): 128-132.

[10] 尚晓清, 杨琳, 赵志龙,等. 基于非凸正则化项的合成孔径雷达图像分割新算法[J]. 光子学报. 2012, 8(28): 120-125.

    SHANG Xiaoqing, YANG Lin, ZHAO Zhilong, et al. A new SAR segmentation algorithm based on nonconvex regularization[J]. Acta Photonica Sinica, 2012, 8(28): 120-125.

[11] BARANIUK R. A lecture on compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4):118-121.

[12] ARVIZU A, CHAVEZ R. Balanced photoreceiver for coherent optical communications[J]. Instrumentation and Development, 1988, 3(10): 3-14.

[13] 郭亮,邢孟道,梁毅,等.合成孔径成像激光雷达成像算法研究[J].光子学报,2009,38(2): 448-452.

    GUO Liang, XING Mengdao, LIANG Yi, et al. Synthetic aperture imaging ladar imaging algorithm[J]. Acta Photonica Sinica, 2009, 38(2): 448-452.

[14] BECK S M, BUCK J R,BUELL W F, et al. Synthetic aperture imaging laser radar: laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35): 7621-7629.

[15] YANG Lianchen,SHEN Mangzuo,GUO Yonghong.The speckle imaging simulation of space objects[J].Acta Photonica Sinica, 2000, 29(12): 1108-1111.

刘智超, 杨进华, 王晨阳, 赵鑫. 基于聚束逆合成孔径激光成像雷达组的三维目标重构的研究[J]. 光子学报, 2013, 42(8): 973. LIU Zhichao, YANG Jinhua, WANG Chenyang, ZHAO Xin. Research on Threedimensional Target Reconstruction Based on Spotlight Mode Inverse Synthetic Aperture Imaging Ladar Group[J]. ACTA PHOTONICA SINICA, 2013, 42(8): 973.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!