激光与光电子学进展, 2012, 49 (6): 060006, 网络出版: 2012-05-04   

非对称微腔研究进展 下载: 667次

Research Progress of Asymmetric Microcavity
作者单位
1 商丘师范学院物理与电气信息学院, 河南 商丘 476000
2 北京大学人工微结构与介观物理国家重点实验室, 北京 100871
摘要
最近几年,具有非圆对称边界形状的光学微腔,即非对称微腔,已经成为微纳光子学领域中的一个重要研究方向。非对称微腔打破了常规回音壁光学微腔的边界圆对称性,使得回音壁模式的辐射具有明显方向性,无需借助外部耦合器件即能有效地同环境交换能量,有望应用于制作集成光学器件和实现自由空间光互联。概要介绍了非对称微腔中的最新研究进展,包括高准直定向发射、高效的自由空间光激发、棘轮形非对称腔以及三维非对称腔4个研究方向,概述其基本原理并展望了未来的发展。
Abstract
Recently, whispering-gallery modes in an optical microcavity gradually become an important area of research owing to its high quality factor, small mode volumes and on-chip characteristics. The cavity without circular symmetry, which is called asymmetric microcavity, is a significant branch of microcavity research. The asymmetric microcavity breaks rounded symmetry, so the cavity has directional radiation. It couples with external environment efficiently. It may be used in integrated optics and free space optical interconnects. We review the research progress of asymmetric microcavity, including directional emission of high collimation, efficient free space excitation, ratchet microcavity, and three-dimensional asymmetric microcavity. The basic principles and the prospect development are also outlined.
参考文献

[1] K. J. Vahala. Optical Microcavties[J]. Nature, 2003, 424(6950): 839~846

[2] T. Harayama, S. Shinohara. Two-dimensional microcavity lasers [J]. Laser Photon. Rev., 2011, 5(2): 247~271

[3] 恽斌峰, 胡国华, 崔一平. 高品质因子聚合物波导微环谐振腔滤波器[J]. 光学学报, 2011, 31(10): 1013002

    Yun Binfeng, Hu Guohua, Cui Yiping. Polymer micro-ring resonator filter with high quality factor[J]. Acta Optica Sinica, 2011, 31(10): 1013002

[4] P. Del′Haye, A. Schliesser, O. Arcizet et al.. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214~1217

[5] 李皓, 尚磊, 涂鑫 等. 基于单频耦合微腔激光器的超高灵敏度生物无标记传感[J]. 激光与光电子学进展, 2010, 47(3): 03SC021

    Li Hao, Shang Lei, Tu Xin et al.. Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser[J]. Laser & Optoelectronics Progress, 2010, 47(3): 03SC021

[6] 于怀勇, 张春熹, 冯丽爽 等. 谐振式硅基二氧化硅集成光学陀螺的克尔噪声研究[J]. 光学学报, 2011, 31(10): 1013003

    Yu Huaiyong, Zhang Chunxi, Feng Lishuang et al.. Research on Kerr-effect-induced noise of integrated optical gyroscope based on silicon on SiO2 waveguide resonator[J]. Acta Optica Sinica, 2011, 31(10): 1013003

[7] S. X. Qian, J. B. Snow, H. M. Tzeng et al.. Lasing droplets: highlighting the liquid-air interface by laser emission[J]. Science, 1986, 231(4737): 486~488

[8] 严英占, 吉喆, 王宝花 等. 锥形光纤倏逝场激发微球腔高Q模式[J]. 中国激光, 2010, 37(7): 0106006

    Yan Yingzhan, Ji Zhe, Wang Baohua et al.. Evanescent wave excitation of microsphere high-Q model using tapered fiber[J]. Chinese J. Lasers, 2010, 37(7): 1789~1793

[9] S. L. Mcall, A. F. J. Levi, R. E. Slusher et al.. Whispering-gallery mode microdisk lasers[J]. Appl. Phys. Lett., 1992, 60(3): 289~291

[10] 王加贤, 李俊杰, 吴文广 等. 耦合微盘及带输出波导的单微盘腔的耦合模式特性[J]. 光学学报, 2011, 31(1): 73~78

    Wang Jiaxian, Li Junjie, Wu Wenguang et al.. Coupled-mode characteristics of coupled-microdisks and single microdisk cavity with an output waveguide[J]. Acta Optica Sinica, 2011, 31(1): 73~78

[11] J. U. Nckel, A. D. Stone, G. Chen et al.. Directional emission from asymmetric resonant cavities[J]. Opt. Lett., 1996, 21(19): 1609~1611

[12] C. Gmachl, F. Capasso, E. E. Narimanov et al.. High-power directional emission from microlasers with chaotic resonators[J]. Science, 1998, 280(5369): 1556~1564

[13] J. U. Nckel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities[J]. Nature, 1997, 385(6611): 45~47

[14] V. M. Apalkov, M. E. Raikh. Directional emission from a microdisk resonator with a linear defect[J]. Phys. Rev. B, 2004, 70(19): 195317

[15] V. A. Podolskiy, E. Narimanov, W. Fang et al.. Chaotic microlasers based on dynamical localization[J]. Proc. Natl. Acad. Sci. USA, 2004, 101(29): 10498~10500

[16] J. Wiersig, M. Hentschel. Unidirectional light emission from high-Q modes in optical microcavities[J]. Phys. Rev. A, 2006, 73(3): 031802(R)

[17] H. E. Türeci, H. G. L. Schwefel, P. Jacquod et al.. Modes of wave-chaotic dielectric resonators[J]. Progress in Optics, 2005, 47: 75~137

[18] S. Feng, T. Lei, H. Chen et al.. Silicon photonics: from a microresonator perspective[J]. Laser Photon. Rev., 2012, 6(2): 145~177

[19] Xiao Yunfeng, Zou Changling, Li Yan et al.. Asymmetric resonant cavities and their applications in optics and photonics: a review[J]. Front. Optoelectron. China, 2010, 3(2): 109~124

[20] J. Ward, O. Benson. WGM microresonators: sensing, lasing and fundamental optics with microspheres[J]. Laser Photon. Rev., 2011, 5(4): 1863~8899

[21] M. Lebental, J. S. Lauret, R. Hierle et al.. Highly directional stadium-shaped polymer microlasers[J]. Appl. Phys. Lett., 2006, 88(3): 031108

[22] G. D. Chern, H. E. Tureci, A. D. Stone et al.. Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars[J]. Appl. Phys. Lett., 2003, 83(9): 1710~1712

[23] A. Tulek, Z. V. Vardeny. Unidirectional laser emission from π-conjugated polymer microcavities with broken symmetry[J]. Appl. Phys. Lett., 2007, 90(16): 161106

[24] S. B. Lee, J. H. Lee, J. S. Chang et al.. Observation of scarred modes in asymmetrically deformed microcylinder lasers[J]. Phys. Rev. Lett., 2002, 88(3): 033903

[25] J. Wiersig, M. Hentschel. Combining directional light output and ultralow loss in deformed microdisks[J]. Phys. Rev. Lett., 2008, 100(3): 033901

[26] S. Lacey, H. L. Wang, D. H. Foster et al.. Directional tunneling escape from nearly spherical optical resonators[J]. Phys. Rev. Lett., 2003, 91(3): 033902

[27] L. Shang, L. Liu, L. Xu. Highly collimated laser emission from a peanut-shaped microcavity[J]. Appl. Phys. Lett., 2008, 92(7): 071111

[28] S. Y. Lee. Optical Mode Properties of 2-D Deformed Microcavities[M]. Rijeka: Intech, 2010. 273~292

[29] F. J. Shu, C. L. Zou, F. W. Sun et al.. Mechanism of directional emission from a peanut-shaped microcavity[J]. Phys. Rev. A, 2011, 83(5): 053835

[30] Q. H. Song, H. Cao. Highly directional output from long-lived resonances in optical microcavity[J]. Opt. Lett., 2011, 36(2): 103~105

[31] Q. J. Wang, C. L. Yan, N. F. Yu et al.. Whispering-gallery mode resonators for highly unidirectional laser action[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(52): 22407~22412

[32] S. B. Lee, J. Yang, S. Moon et al.. Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers[J]. Appl. Phys. Lett., 2007, 90(4): 041106

[33] Y. S. Park, H. L. Wang. Resolved-sideband and cryogenic cooling of an optomechanical resonator[J]. Nature Phys., 2009, 5(7): 489~493

[34] M. Hentschel, M. Vojta. Multiple beam interference in a quadrupolar glass fiber[J]. Opt. Lett., 2001, 26(22): 1764~1766

[35] Y. F. Xiao, C. H. Dong, Z. F. Han et al.. Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses[J]. Opt. Lett., 2007, 32(6): 644~646

[36] Y. F. Xiao, C. H. Dong, C. L. Zou et al.. Low-threshold microlaser in a high-Q asymmetrical microcavity[J]. Opt. Lett., 2009, 34(4): 509~511

[37] J. Yang, S. B. Lee, J. B. Shim et al.. Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser[J]. Appl. Phys. Lett., 2008, 93(6): 061101

[38] J. B. Shim, S. B. Lee, S. W. Kim et al.. Uncertainty-limited turnstile transport in deformed microcavities[J]. Phys. Rev. Lett., 2008, 100(17): 174102

[39] J. Yang, S. B. Lee, S. Moon et al.. Pump-induced dynamical tunneling in a deformed microcavity laser[J]. Phys. Rev. Lett., 2010, 104(24): 243601

[40] S. Y. Lee, S. W. Rim, J. W. Ryu et al.. Quasiscarred resonances in a spiral-shaped microcavity[J]. Phys. Rev. Lett., 2004, 93(16): 164102

[41] M. W. Kim, K. W. Park, C. H. Yi et al.. Analysis of broad emission direction in a spiral-shaped microcavity laser[J]. Opt. Lett., 2011, 36(23): 4503~4505

[42] X. Wu, H. Li, L. Liu et al.. Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser[J]. Appl. Phys. Lett., 2008, 93(8): 081105

[43] 吴翔, 尚磊, 李皓 等. 单频单方向回音壁模式微腔激光器[J]. 激光与光电子学进展, 2009, 46(2): 15

    Wu Xiang, Shang Lei, Li Hao et al.. Unidirectional single-frequency whispering-gallery modes lasers[J]. Laser & Optoelectronics Progress, 2009, 46(2): 15

[44] J. Wiersig, A. Eberspacher, J. B. Shim et al.. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities[J]. Phys. Rev. A, 2011, 84(2): 023845

[45] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles[J]. Phys. Rev. A, 2011, 84(6): 063828

[46] S. Lacey, H. L. Wang. Directional emission from whispering-gallery modes in deformed fused-silica microspheres[J]. Opt. Lett., 2001, 26(24): 1943~1945

[47] T. Rapenbrock. Numerical study of a three-dimensional generalized stadium billiard[J]. Phys. Rev. E, 2000, 61(4): 4626~4628

[48] T. Gilbert, D. P. Sanders. Stable and unstable regimes in higher-dimensional convex billiards with cylindrical shape[J]. New J. Phys., 2011, 13(2): 023040

[49] J. U. Nckel, G. Bourdon, R. E. Le et al.. Mode structure and ray dynamics of a parabolic dome microcavity[J]. Phys. Rev. E, 2000, 62(6): 8677~8699

[50] M. Sumetsky. Whispering-gallery-bottle microcavities: 3D etalon[J]. Opt. Lett., 2004, 29(1): 8~10

舒方杰, 杨起帆. 非对称微腔研究进展[J]. 激光与光电子学进展, 2012, 49(6): 060006. Shu Fangjie, Yang Qifan. Research Progress of Asymmetric Microcavity[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!