光子学报, 2015, 44 (4): 0406003, 网络出版: 2015-04-28  

基于荧光强度比值法可用于现场测量的低成本聚合物光纤温度传感器

Low-cost Robust Polymer Optical Fiber Temperature Sensor Based on FIR Method for in Situ Measurement
作者单位
1 中国科学院西安光学精密机械研究所 信息光子学研究室, 西安 710119
2 中国科学院大学, 北京 100049
3 西北大学 物理系, 西安 710069
摘要
基于荧光强度比值法, 设计了一种使用两种荧光染料的光纤温度传感器.实验中, 罗丹明B和罗丹明110分别为对温度敏感和对温度不敏感的荧光传感物质, 利用聚合物光纤来传导激发光及接收荧光.由于两种染料的荧光谱峰相距60 nm, 因此容易将二者对应的荧光谱分开.通过确定能代表两种染料的最优荧光光谱范围, 获得具有良好线性度的温度-荧光强度标定曲线.实验研究了不同浓度的荧光染料对标定曲线的影响, 当染料浓度为0.3 g/L时, 可获得0.28℃的最小均方误差及0.0128/℃的灵敏度.此外, 该传感器还具备一定的抗光源扰动和抗荧光染料漂白的能力.
Abstract
An optical fiber temperature sensor using two fluorescent dyes based on Fluorescence Intensity Ratiometric (FIR) method was proposed. In experiment, Rhodamine B and Rhodamine 110, which were temperature-sensitive and temperature-insensitive respectively, acted as the sensing materials. Polymer optical fibers were utilized to transmit excitation light and collect emitted fluorescence. The two dyes- fluorescence spectra could be separated conveniently since their respective emission peaks were 60 nm apart. The optimal spectral intervals of RH110 and RHB for FIR were identified. By calculating the fluorescence intensity ratio of the two dyes, the calibration curves of intensities ratios vs temperature were obtained with good linearity. The effects of different concentrations of fluorophore on the calibration curves were also studied. When the concentrations of dyes were 0.3 g/L, a minimum rms temperature error of 0.28℃ and a sensitivity of 0.0128/℃ were achieved. Moreover, the influences of illumination source-s fluctuations and dyes- photo-bleaching can be eliminated to some degree.
参考文献

[1] ZHANG Ji-jun, WU Zu-tang, PAN Guo-feng, et al. Design of optical fiber grating-based high-precision and low frequency vibration sensor[J]. Acta Photonica Sinica, 2014, 43(s1): 0128001.

[2] LIU Jian-qing, YIN Fei-fei, LI Jian-qiang, et al. Resolution improved Raman distributed temperature sensors based on error compensation[J]. Acta Photonica Sinica, 2014, 43(s1): 0128002.

[3] LIN Xiao, REN Li-yong, XU Yi-ping, et al. Low-cost multipoint liquid-level sensor with plastic optical fiber[J]. IEEE Photonics Technology Letters, 2014, 26(16): 1613-1616.

[4] JING Yao-qiu, JIANG Yi, XIAO Shang-hui, et al. A differential absorption based optical fiber Methane gas sensing system[J]. Acta Photonica Sinica, 2014, 43(4): 0428002.

[5] MINARDO A, BERNINI R, ZENI L. Distributed temperature sensing in polymer optical fiber by BOFDA[J]. IEEE Photonics Technology Letters, 2014, 26(4): 387-390.

[6] MIZUNO Y, NAKAMURA K. Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing[J]. Optics Letters, 2010, 35(23): 3985-3987.

[7] LUO Yan-hua, WU Wen-xuan, WANG Tong-xin, et al. Analysis of multimode BDK doped POF gratings for temperature sensing[J]. Optics Communications, 2012, 285(21): 4353-4358.

[8] TAO S, JAYAPRAKASH A. A fiber optic temperature sensor with an epoxy-glue membrane as a temperature indicator[J]. Sensors and Actuators B: Chemical, 2006, 119(2): 615-620.

[9] DUONG H D, RHEE J I. Exploitation of thermo-effect of rhodamine B entrapped in sol-gel matrix and silica gel for temperature detection[J]. Sensors and Actuators B: Chemical, 2007, 124(1): 18-23.

[10] ZHANG Z, GRATTAN K T V, PALMER A W. Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite[J]. Review of Scientific Instruments, 1992, 63(8): 3869-3873.

[11] AIZAWA H, KATSUMATA T, KOMURO S, et al. Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials[J]. Sensors and Actuators A: Physical, 2006, 126(1): 78-82.

[12] CASTRELLON-Uribe J. Experimental results of the performance of a laser fiber as a remote sensor of temperature[J]. Optics and Lasers in Engineering, 2005, 43(6): 633-644.

[13] LI D, WANG Y, ZHANG X, et al. Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2 O3[J]. Optics Communications, 2012, 285(7): 1925-1928.

[14] CASTRELLON J, PAEZ G, STRIJNIK M. Radiometric analysis of a fiber optic temperature sensor[J]. Optical Engineering, 2002, 41(6): 1255-1261.

[15] LIU L, WANG Y, ZHANG X, et al. Optical thermometry through green and red upconversion emissions in Er3+/Yb3+/Li+: ZrO2 nanocrystals[J]. Optics Communications, 2011, 284: 1876-1879.

[16] LAM H T, KOSTOV Y, TOLOSA L, et al. A high-resolution non-contact fluorescence-based temperature sensor for neonatal care[J]. Measurement Science and Technology, 2012, 23(3): 035104.

[17] KUESTER T, ROBUCCI R, LAM H, et al. High resolution fluorescence-based temperature sensor for stand-off detection in physiological range[C]. Sensors, 2013 IEEE. IEEE, 2013: 1-4.

[18] LIN Xiao, REN Li-yong, QU En-shi, et al. Theoretical and experimental study on nonintrusive light injection via cladding in plastic optical fibers[J]. Journal of Lightwave Technology, 2013, 31(3): 359-365.

[19] SAKAKIBARA J, ADRIAN R J. Whole field measurement of temperature in water using two-color laser induced fluorescence[J]. Experiments in Fluids, 1999, 26(1-2): 7-15.

[20] CHAUHAN V M, HOPPER R H, ALI S Z, et al. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate[J]. Sensors and Actuators B: Chemical, 2014, 192: 126-133.

[21] RAI V K. Temperature sensors and optical sensors[J]. Applied Physics B, 2007, 88(2): 297-303.

杜新超, 贺正权, 林霄, 周利斌, 胡宝文, 罗宝科, 郭小艺, 孔德鹏, 任立勇, 李育林. 基于荧光强度比值法可用于现场测量的低成本聚合物光纤温度传感器[J]. 光子学报, 2015, 44(4): 0406003. DU Xin-chao, HE Zheng-quan, LIN Xiao, ZHOU Li-bin, HU Bao-wen, LUO Bao-ke, GUO Xiao-yi, KONG De-peng, REN Li-yong, LI Yu-lin. Low-cost Robust Polymer Optical Fiber Temperature Sensor Based on FIR Method for in Situ Measurement[J]. ACTA PHOTONICA SINICA, 2015, 44(4): 0406003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!