光学学报, 2018, 38 (7): 0730001, 网络出版: 2018-07-16   

基于加权平均法的活体藻类三维荧光标准光谱构建

Construction of Three-Dimensional Fluorescence Standard Spectra of Algae in vivo Based on Weighted Average Method
张小玲 1,2,3殷高方 1,3赵南京 1,3,*杨瑞芳 1,3覃志松 1,3,4陈双 1,2,3甘婷婷 1,3肖雪 1,3段静波 1,3刘建国 1,3刘文清 1,3
作者单位
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
4 桂林电子科技大学, 广西 桂林 541004
摘要
针对活体荧光光谱不稳定引起的蓝藻门活体藻类定量误差问题,以实验室培养的4种类6个生长期的48个蓝藻样品为研究对象,通过测量样品叶绿素a和藻蓝蛋白的含量,结合藻类活体三维荧光光谱,研究了不同藻种种类、生长期和生长环境下蓝藻细胞色素组成和色素荧光效率的差异;定量分析不同条件对藻类活体荧光光谱不稳定性的影响,获得了不同条件下的光谱不稳定性权重谱;在此基础上,构建基于加权平均方法的蓝藻门活体藻类加权荧光光谱;比较了加权荧光光谱与不同条件下归一化荧光光谱对样品集的测量结果。结果表明:加权荧光光谱能有效降低荧光测量法对藻种种类、生长期、生长环境的依赖性,提高蓝藻门叶绿素浓度的测量准确性;测量结果的相对误差为0.1%~30.4%,平均相对误差为12.8%,相对误差最大可降低104.1%。
Abstract
Forty-eight samples belonging to four common species of Cyanophyta are studied in order to reduce the chlorophyll a concentration measurement errors caused by unstable fluorescence spectra in vivo. We analyze the effects of algae species, growing period, and growing environment on the photosynthetic pigment composition and fluorescence efficiency by measuring the content of chlorophyll a and phycocyanin, as well as the three-dimensional fluorescence spectra of Cyanophyta in vivo. And we obtain the weight spectra by analyzing the spectral instability under different habitat conditions. The weight fluorescence spectrum of Cyanophyta in vivo is established based on the weighted average method. The measurement results that respectively obtained by the weight spectrum and different normalized spectra are compared, and the comparisons indicate that the weight spectrum can significantly reduce the dependence of fluorescence method on algae species, growing period, and growing environment, and thus increase the accuracy of chlorophyll a concentration of Cyanophyta. The relative error of the weight spectrum is 0.1%-30.4%, with a mean relative error of 12.8%. The maximum relative error of anabaena can be reduced by 104.1% in the weight spectrum.
参考文献

[1] Hilton J, Rigg E, Jaworski G. Algal identification using in vivo fluorescence spectra[J]. Journal of Plankton Research, 1989, 11(1): 65-74.

[2] Bennett A, Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga[J]. Journal of Cell Biology, 1973, 58(2): 419-435.

[3] Proctor C W, Roesler C S. New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence[J]. Limnology and Oceanography, 2010, 8(12): 695-708.

[4] Jakob T, Schreiber U, Kirchesch V, et al. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits[J]. Photosynthesis Research, 2005, 83(3): 343-361.

[5] 苏荣国, 胡序朋, 张传松, 等. 荧光光谱结合主成分分析对赤潮藻的识别测定[J]. 环境科学, 2007, 28(7): 1529-1533.

    Su R G, Hu X P, Zhang C S, et al. Discrimination of red tide algae by fluorescence spectra and principle component analysis[J]. Environmental Science, 2007, 28(7): 1529-1533.

[6] 王志刚, 刘文清, 张玉钧, 等. 三维荧光光谱法分类测量水体浮游植物浓度[J]. 中国环境科学, 2008, 28(2): 136-141.

    Wang Z G, Liu W Q, Liu J G, et al. The classified measuring of three dimensional excitation-emission fluorescence matrix technique on phytoplankton concentration in water body[J]. China Environmental Science, 2008, 28(2): 136-141.

[7] Lawrenz E, Richardson T L. Howdoes the species used for calibration affect chlorophyll a measurements by in situ fluorometry [J]. Estuaries and Coasts, 2011, 34(4): 872-883.

[8] Loftus M E, Seliger H H. Some limitations of the in vivo fluorescence technique[J]. Chesapeake Science, 1975, 16(2): 79-92.

[9] Jakob T, Schreiber U, Kirchesch V, et al. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits[J]. Photosynthesis Research, 2005, 83(3): 343-361.

[10] 覃志松, 殷高方, 赵南京, 等. 基于光脉冲诱导快相与弛豫荧光的光合作用参数测量技术[J]. 光子学报, 2017, 46(9): 0930003.

    Qin Z S, Yin G F, Zhao N J, et al. Photosynthesis parameters measurement technology based on fast phase and relaxation fluorescence induced by optical pulses[J]. Acta Photonica Sinica, 2017, 46(9): 0930003.

[11] 石朝毅, 高先和, 殷高方, 等. 基于可变光脉冲诱导荧光的浮游植物光合作用参数测量系统设计[J]. 激光与光电子学进展, 2016, 53(7): 072301.

    Shi C Y, Gao X H, Yin G F, et al. Design of phytoplankton photosynthetic parameter measurement system based on variable pulse induced fluorescence[J]. Laser & Optoelectronics Progress, 2016, 53(7): 072301.

[12] 张小玲, 殷高方, 赵南京, 等. 不同生境条件下藻蓝蛋白活体荧光光谱特性研究[J]. 光谱学与光谱分析, 2017, 37(4): 1145-1151.

    Zhang X L, Yin G F, Zhao N J, et al. Research on fluorescence spectral characteristics of phycocyanin under different habitat conditions[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1145-1151.

[13] 国家环境保护总局, 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.

    National Environmental Protection Bureau, Monitoring analysis methods for water and wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2002.

[14] McQuaid N, Zamyadi A, Prévost M, et al. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source[J]. Journal of Environmental Monitoring, 2011, 13(2): 455-463.

张小玲, 殷高方, 赵南京, 杨瑞芳, 覃志松, 陈双, 甘婷婷, 肖雪, 段静波, 刘建国, 刘文清. 基于加权平均法的活体藻类三维荧光标准光谱构建[J]. 光学学报, 2018, 38(7): 0730001. Zhang Xiaoling, Yin Gaofang, Zhao Nanjing, Yang Ruifang, Qin Zhisong, Chen Shuang, Gan Tingting, Xiao Xue, Duan Jingbo, Liu Jianguo, Liu Wenqing. Construction of Three-Dimensional Fluorescence Standard Spectra of Algae in vivo Based on Weighted Average Method[J]. Acta Optica Sinica, 2018, 38(7): 0730001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!