谭小璇 1,2甘婷婷 2,*周蓉卉 3,**殷高方 2[ ... ]黄旭昀 3
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所,中国科学院环境光学与技术重点实验室,安徽 合肥 230031
3 珠海广睿汇利发展有限公司,广东 珠海 519000
4 合肥工业大学资源与环境工程学院,安徽 合肥 230009
5 四川省辐射环境管理监测中心站,四川 成都 610000
放射性核素进入水环境所导致的水体污染问题一直备受关注。水体放射性核素毒性的现场快速检测是当今环境领域面临的重要挑战。针对此问题,将蛋白核小球藻作为受试生物,以三种典型放射性核素锶(90Sr)、铯(137Cs)和钴(60Co)为研究对象,利用荧光动力学方法,研究了快速叶绿素荧光诱导动力学(OJIP)曲线及最大光化学量子产率(Fv/FmFv是可变荧光,Fm是最大荧光)和光合性能参数(PIABS)对90Sr、137Cs和60Co三种放射性核素在180 min短期胁迫下的响应规律与特性,从而明确了藻类荧光动力学技术应用于水体放射性核素毒性现场快速检测的可行性。此外,通过Fv/Fm与PIABS对三种放射性核素响应性能的对比,进一步优选出可用于放射性核素毒性灵敏检测的最佳光合荧光参数。结果表明:在暴露180 min以内,90Sr、137Cs和60Co三种放射性核素均会破坏蛋白核小球藻的光合系统,引起OJIP曲线的显著变化,表明微藻荧光动力学方法能够用于水体放射性核素毒性的快速检测;Fv/Fm和PIABS对三种放射性核素的响应均具有活度浓度依赖性和时间依赖性,表明基于微藻荧光动力学方法所获取的Fv/Fm和PIABS均可作为毒性响应参数用于放射性核素毒性的检测和评估;根据基于Fv/Fm和PIABS所获取的三种放射性核素的20%效应浓度(EC20)和50%效应浓度(EC50)对比可知,PIABS相较于Fv/Fm对放射性核素毒性具有更灵敏的响应特性,因此PIABS是基于藻类荧光动力学技术实现水体放射性核素快速检测的最佳毒性响应参数。本研究为水体中放射性核素毒性的现场快速检测提供了重要的方法基础。
荧光动力学 放射性核素 微藻 光合荧光参数 毒性检测 
光学学报
2024, 44(6): 0601009
作者单位
摘要
1 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031合肥学院生物食品与环境学院, 安徽 合肥 230601
2 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
3 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
4 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
5 安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
水体重金属铅(Pb)污染对人类健康及水生态环境具有重要影响。 为实现水体重金属Pb的现场快速检测, 以蛋白核小球藻为吸附剂, 开展了基于蛋白核小球藻富集-X射线荧光(XRF)光谱的水体重金属Pb快速检测研究。 结果表明: 蛋白核小球藻与重金属Pb反应液的pH值为7且反应温度为25 ℃时, 蛋白核小球藻对重金属Pb具有快速高效吸附特性, 在反应时间为5 min时对0.012 8~0.353 5 mg·L-1这一较宽浓度范围内重金属Pb的吸附效率高达92%以上, 但对类金属As的吸附效率却低于5%, 因此基于蛋白核小球藻的富集作用可以有效避免重金属Pb与类金属As共存时As的Kα最优特征谱峰对XRF光谱测量过程中Pb的Lα最优特征谱峰的干扰与影响; 在蛋白核小球藻对重金属Pb的最佳吸附反应条件下, 当反应液样品富集量为10 mL时, 建立了基于蛋白核小球藻富集-XRF光谱的水体重金属Pb定量检测方法, 水体重金属Pb浓度与XRF光谱中Pb的Lα特征谱峰净积分荧光强度间具有良好的线性关系, 相关系数r为0.990, 检测限为7.2 μg·L-1, 低于我国《地表水环境质量标准(GB 3838—2002)》中Ⅰ类水质标准中重金属Pb的标准限值; 采用该方法对合肥市市内派河、 匡河、 南淝河、 四里河及十五里河实际水体水样中重金属Pb进行检测, 回收率均在87.84%~115.66%范围内, 表明所建立的藻富集与XRF光谱法相结合的水体重金属Pb快速检测方法能够很好地应用于实际水体中重金属Pb的快速分析与检测。 该研究为发展水体重金属现场快速监测技术与仪器奠定了方法基础。
X射线荧光 重金属  快速检测 藻富集 X-Ray fluorescence Heavy metals Lead Rapid detection Enrichment with algae 
光谱学与光谱分析
2023, 43(8): 2500
甘婷婷 1,2,3殷高方 1,2,3,*赵南京 1,2,3,**汪颖 1,2,3[ ... ]叶紫琪 4
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室,安徽 合肥 230031
4 合肥工业大学,安徽 合肥 230009
以淡水微藻中的蛋白核小球藻为受试生物,以典型毒性氯化消毒副产物氯乙酸及三氯乙腈为研究对象,采用荧光动力学方法研究了4种光合荧光参数Fv/FmFv/FoFm/FoFo为初始荧光强度,Fm为最大荧光强度,Fv=Fm-Fo)及PIABS对两种消毒副产物的响应规律,并分别从对低质量浓度与等质量浓度消毒副产物响应性能、10%效应质量浓度(EC10)与50%效应质量浓度(EC50)值4个方面对比了4个光合荧光参数的响应灵敏性。结果表明:4个参数对两种消毒副产物都具有质量浓度响应特性,抑制率与消毒副产物质量浓度之间都具有较好的Logistic曲线型剂量-效应关系,修正相关系数Radj2均大于0.993,其中PIABSRadj2最大;4个参数对两种消毒副产物毒性的响应灵敏性从大到小的排序均为PIABSFv/FoFm/FoFv/Fm,因此PIABS是基于荧光动力学方法检测水体氯化消毒副产物毒性较为灵敏的响应指标。该研究结果为发展水体消毒副产物毒性的现场快速检测方法与技术提供了重要参考。
光谱学 荧光 氯化消毒副产物 生物毒性 微藻 荧光动力学 光合荧光参数 
光学学报
2023, 43(24): 2430005
刘津京 1,2,3殷高方 1,2,3,*赵南京 1,2,3张小玲 4[ ... ]程钊 1,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室,安徽 合肥 230031
4 安徽大学物质科学与信息技术研究院,安徽 合肥 230601
以蛋白核小球藻为研究对象,通过毒性胁迫、光照胁迫和温度改变蛋白核小球藻的光合活性,研究蛋白核小球藻叶绿素荧光产量与光合活性参数Fv/Fm的变化关系。结果表明:3种不同生长环境下,蛋白核小球藻的叶绿素荧光产量随着Fv/Fm改变而发生较为明显变化,最大变化范围为235~668 (μg·L-1-1Fv/Fm与叶绿素荧光产量之间具有明显负线性相关性,线性优度R2超过0.91。该研究结果为发展更为准确的藻类叶绿素a质量浓度活体荧光检测方法提供了重要依据。
光谱学 浮游藻类 活体荧光法 叶绿素荧光产量 光合活性 浓度检测 
光学学报
2023, 43(23): 2330001
黄朋 1,2殷高方 1,2,3,*赵南京 1,2,3,4甘婷婷 2,3[ ... ]张小玲 2,4
作者单位
摘要
1 合肥学院生物食品与环境学院,安徽 合肥 230601
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031
3 中国科学技术大学,安徽 合肥 230026
4 安徽大学物质科学与信息技术研究院,安徽 合肥 230601
浮游藻类密度监测对水质状况诊断及藻华灾害预警具有重要意义。因此,提出一种基于微流控-显微荧光技术的浮游藻细胞密度检测方法。该方法基于微流控技术实现样品快速定量进样,利用共聚焦显微荧光结构实现藻细胞特征荧光信号的高信噪比采集,并通过分析荧光峰信息实现浮游藻细胞计数。以杜氏盐藻、色球藻、隐藻和赤潮藻为测试对象的结果表明:在1.3×106 L-1密度范围内测量相对误差均小于3.96%,且准确率不受悬浮物、藻细胞种类以及尺寸的影响;在10%允许误差下,藻类密度检测上限可提升至5×106 L-1,完全能够满足自然水体浮游藻细胞密度检测需求,为水体藻细胞密度快速准确检测提供了新途径。
浮游藻类 显微荧光 微流控 藻细胞计数 
光学学报
2023, 43(18): 1812002
陈金计 1,3殷高方 1,3,*赵南京 1,3张小玲 2[ ... ]王璐 1
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室,安徽 合肥 230031
2 安徽大学物质科学与信息技术研究院信息材料与智能感知安徽省实验室, 安徽 合肥 230039
3 合肥学院生物食品与环境学院, 安徽 合肥 230601
浮游藻类作为单细胞生物,其光合活性外界胁迫作用响应灵敏,是水质综合毒性检测的良好受试生物,因此认识受试藻种光合活性状态对温度和光照等主要环境因子的响应规律,掌握有效控制受试藻种光合活性状态和浓度的培养条件,对水质综合毒性检测至关重要。以模式受试生物蛋白核小球藻为研究对象,研究了不同温度梯度和光照强度下蛋白核小球藻光合活性变化规律。研究结果显示:蛋白核小球藻在不同梯度光照下,藻种光合活性和藻种浓度的变化非常明显。低光照下 (75 μE、125 μE) 藻种平均光合活性在0.60左右但藻种浓度基本不增加;中光照下 (175、225、300、375 μE) 藻种平均光合活性在0.57左右且此时藻种浓度有明显增加,其中,实验最佳光照为375 μE;高光照下 (475 μE和600 μE) 藻种平均光合活性低于0.56 (初始活性),会对藻种的生长状态产生胁迫。不同梯度温度下藻种光合活性和藻种浓度也有明显变化,中低温下 (5、15、25 ℃) 藻种平均光合活性在0.59左右且藻种浓度随着温度的升高而增加,最佳温度为25℃;高温下 (30、35、40 ℃) 藻种光合活性迅速下降直至失活。研究结果表明可以通过控制光照和温度来控制浮游藻类的光合活性和生长速度,为在线水质综合毒性测量仪提供标准的受试藻样培养方式,从而给便携式水质综合毒性测量仪的研发奠定基础。
浮游藻类 光合活性 叶绿素荧光 环境因子 planktonic algae photosynthetic activity chlorophyll fluorescence environmental factors 
大气与环境光学学报
2023, 18(2): 133
贾仁庆 1,2殷高方 2,*赵南京 1,2,**徐敏 2[ ... ]张小玲 5
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031
3 合肥学院,安徽 合肥 230601
4 安徽省生态环境监测中心,安徽 合肥 230061
5 安徽大学,安徽 合肥 230601
以鱼腥藻、栅藻和盘星藻为分析对象,通过采集多个焦平面的显微图像,基于拉普拉斯能量与引导滤波以及图像HSV颜色空间饱和度分量分别检测显微图像聚焦区域和失焦区域,研究浮游藻类细胞显微多聚焦图像融合方法,并与小波变换、拉普拉斯金字塔以及脉冲耦合神经网络融合方法进行对比分析。结果表明:鱼腥藻、栅藻和盘星藻融合图像的边缘信息保持度、空间频率、平均梯度分别为0.3529、8.9654、0.0055,0.3778、7.0058、0.0023和0.2940、1.5445、0.0005,均优于对比融合方法,具有更好的边缘信息传递能力及更高的图像清晰度,有效实现了浮游藻类细胞显微多聚焦图像融合,为获取浮游藻类细胞的全景深显微图像提供了思路。
图像处理 浮游藻类细胞 显微 多聚焦图像融合 聚焦区域检测 失焦扩散效应 
光学学报
2023, 43(12): 1210001
作者单位
摘要
1 上海第二工业大学高等职业技术(国际)学院, 上海 201209
2 上海润尔健康管理有限公司, 上海 200120
通过分析比较儿童青少年视力矫正相关研究及哺光仪、功能性框架眼镜的病历数据, 获得了近视防控效果比较好的方法, 从数据中发现大部分儿童青少年联合使用功能性框架眼镜和哺光仪后视力有所提升, 近视加深速度减缓, 眼轴生长速度减慢。因此, 大部分儿童青少年在改善用眼习惯的同时结合双重防控方法, 视力矫正效果更佳。
视疲劳 眼轴 哺光仪 防控 visual fatigue eye axis optical feeding instrument prevention and control 
玻璃搪瓷与眼镜
2022, 50(9): 24
作者单位
摘要
1 中国科学院 安徽光学精密机械研究所 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 合肥学院, 安徽 合肥 230601
3 安徽大学 物质科学与信息技术研究院 安徽省信息材料与智能感知实验室, 安徽 合肥 230601
4 中国科学技术大学 环境科学与光电技术学院, 安徽 合肥 230026
静态散射光蕴含颗粒尺寸的特征信息, 因此静态光散射法是快速测量水体悬浮物粒度的有效手段。然而由于颗粒侧向和后向散射光微弱, 不易探测; 前向散射受艾里斑影响, 存在测量盲区, 导致静态光散射法的小颗粒粒度测量精度不足。提出水体小粒径悬浮物粒度低位异面扫描光散射测量方法, 以光电倍增管为探测器, 采用多角度连续扫描方式探测颗粒的光散射信息: 通过缩短探测器到样品池距离, 提高相同角分辨率下的散射光强度, 提升侧向和后向散射光探测灵敏度; 将探测器偏离激发光轴, 避开艾里斑盲区, 在不改变前角小角度测量精度条件下, 实现前向大角度散射光探测。在此基础上, 结合米散射模型, 实现小粒径悬浮物粒度测量。不同粒度样品实验表明, 方法能准确测量350nm至2μm范围内颗粒的粒度, 2μm、1.5μm、500nm和350nm标物D50的测量相对误差均不超过5.61%, 均低于标物不确定度的相对误差, 且优于实验室内激光粒度仪的测量结果。
光学测量 小粒径 悬浮颗粒物 粒度测量 静态光 低位异面测量 optical measurement small particle size suspended particulate matter particle size measurement static light low position out-of-plane measurement 
光学技术
2022, 48(5): 548
汪颖 1,2,3甘婷婷 2,3,*赵南京 1,2,3殷高方 2,3[ ... ]叶紫琪 2,3,4
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031
3 安徽省环境光学监测技术重点实验室,安徽 合肥 230031
4 合肥工业大学资源与环境工程学院,安徽 合肥 230009
将蛋白核小球藻对重金属Cr的快速高效吸附特性与重金属现场快速检测的X射线荧光(XRF)光谱技术相结合,通过蛋白核小球藻对水体重金属Cr的富集,实现了XRF光谱技术对水体重金属Cr的快速检测。研究表明:蛋白核小球藻对重金属Cr在5 min即可达到高效稳定的吸附,吸附反应的最佳pH值范围为6~8,最佳蛋白核小球藻的质量浓度为100 mg·L-1;在最佳吸附反应条件下,采用抽滤-滤膜富集方式实现蛋白核小球藻对水体重金属Cr的快速富集,再进行XRF光谱测量,当反应液富集量为10 mL,XRF信号累积时间为2 min时,重金属Cr的Kα特征谱峰净积分荧光强度与待测水体中Cr质量浓度间具有很好的线性关系,相关系数R2为0.9967,水体重金属Cr的方法检测限为0.0299 mg·L-1,显著低于《地表水环境质量标准(GB 3838—2002)》中规定的Ⅱ类水中Cr的标准限值0.05 mg·L-1。采用该方法对安徽省合肥市匡河水样进行加标回收测试,重金属Cr的回收率均在90.00%~101.24%范围内,10次重复测量的精密度为1.59%~2.66%,因此蛋白核小球藻富集与XRF光谱测量相结合的方法能够很好地实现实际水体重金属Cr的精准检测。
光谱学 重金属 X射线荧光  快速检测 藻富集 
光学学报
2022, 42(24): 2430004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!