光学技术, 2017, 43 (4): 294, 网络出版: 2017-08-09  

磁光光子晶体结构的法拉第效应增强

Faraday effect enhancement of magnetophotonic crystals
作者单位
哈尔滨理工大学 工程电介质及其应用教育部重点实验室,  哈尔滨  150080
摘要
在超薄薄膜的基础上, 基于时域有限差分法原理, 利用FDTD Solutions仿真软件分别研究了基于两种多层膜结构和一种金属光栅结构的磁光光子晶体法拉第旋光效应。研究表明, 多层膜结构的法拉第旋光效应增强原理为入射光在薄膜中心层的透射谱谐振, 而金属光栅周期结构的法拉第效应增强是通过金属光栅激发表面等离子体实现的; 在三种结构中, 金属光栅周期结构具有更广的法拉第偏转角增强域。进一步通过参数优化, 实现对金属光栅周期结构工作波长的可调节性研究, 为薄膜型磁光器件设计提供了理论依据。
Abstract
On the basis of thin films, theoretical stimulations of three photonic crystal models are performed according to the principle of finite-difference time-domain method utilizing the simulation software-FDTD solutions. The models include two multilayer magnetophotonic crystal models and a photonic crystal model called metal grating structure where garnet film is deposited on the glass substrate and periodic gold nanowires are sitting atop. The study shows that the principle of Faraday Effect enhancement of multilayer structure is the transmission spectrum resonance at the center layer of the film. Faraday Effect enhancement of metal grating structure is achieved by exciting the surface plasmas. By comparison, metal grating structure possesses a broader domain of Faraday Effect enhancement among three structures. In addition, study of adjustability of metal grating structure is achieved through the parameter optimization. A theoretical foundation for design of thin-film magneto-optic device is offered.
参考文献

[1] DENG Ming, LIU Danhui, HUANG Wei, et al. Highly-sensitive magnetic field sensor based on fiber ring laser[J]. Optics Express, 2016, 24(1): 645-651.

[2] 方云团, 胡坚霞, 徐青松, 等. 基于单向边界模式与磁性微腔模式耦合的磁光存储系统[J]. 中国激光, 2015, 0(11): 143-147.

    FANG Yuntuan, HU Jianxia, XU Qingsong, et al. Magneto-optical storage system based on the coupling of the one-way edge modes and micro cavity modes[J]. Chinese Journal of Lasers, 2015, 0(11): 143-147.

[3] YAN Haitao, ZHAO Xiaoyan, ZHANG Chao, et al. A novel current fiber sensor with magnetostrictive material based on the plasmon response[J]. Optik, 2016, 127(3): 1323-1325.

[4] Takuya Yoshimoto, Taichi Goto, Ryosuke Isogai, et al. Magnetophotonic crystal with cerium substituted yttrium iron garnet and enhanced Faraday rotation angle[J]. Optics Express, 2016, 24(8): 8746-8753.

[5] 汤月明, 方云团, 吕翠红, 等. 光子晶体磁性微腔非对称耦合的非互易传输[J]. 中国激光, 2015, 0(6): 209-215.

    TANG Yueming, FANG Yuntuan, LV Cuihong, et al. Nonreciprocal transmission based on nonsymmetriccoupling of magnetic microcavity in photonic crystal[J]. Chinese J Lasers, 2015, 0(6): 209-215.

[6] 刘道军. 多层对称薄膜的光子晶体光波导设计[J]. 光学技术, 2016, 42(3): 225-228.

    LIU Daojun. The design of symmetrical multi-layer thin-film photonic crystal optical waveguide[J]. Optical Technique, 2016, 42(3): 225-228.

[7] DONG Huiyuan, WANG Jin, CUI Tiejun. One-way Tamm plasmon polaritons at the interface between magnetophotonic crystals and conducting metal oxides[J]. Phys Rev B, 2013, 87(4):045406-5.

[8] INOUE M, FUJII T. A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structures[J]. J. Appl. Phys, 1997, 81(8): 5659-5661.

[9] INOUE M, FUJII T. Magneto-optical properties of one dimensional photonic crystals composed of magnetic and dielectric layers[J]. J. Appl. Phys, 1998, 83 (11): 6768-6770.

[10] SAKAGUCHI S, SUGIMOTO N. Multilayer films composed of periodic magneto-opticaland dielectric layers for use as Faraday rotators[J]. Opt. Commun, 1999, 162(1-3):64-70.

[11] MIAO X P, GAO L, XU P. Faraday magneto-optical rotation in compositionally graded films[J]. J. Appl. Phys, 2008, 103(2): 023512-5.

[12] FLOESS D, CHIN J Y, KAWATANI A, et al. Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths[J]. Light: Science & Applications, 2015, 4(5): e2841-e2847.

[13] FU Shufang, LIANG Hong, ZHOU Sheng, et al. High sum-frequency generation in dielectric/antiferromagnet/Ag sandwich structures[J]. Chinese Physics B, 2014, 23(5): 556-562.

[14] KAHL S, GRISHIN A M. Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection[J]. Phys. Rev. B, 2005,71(20): 205110-5.

[15] XIAO Sanshui, HE Sailing. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals[J]. PhysicsAB, 2002, 324(1-4): 403-408

[16] 刘公强, 乐志强, 沈德芳. 磁光学[M].上海, 上海科学技术出版社, 2001, 4: 38.

    LIU Gongqiang, LIU Zzhiqiang, SHEN Defang. Magnetooptics[M]. Shanghai, Shanghai Scientific and Technical Publishers,2001, 4: 38.

[17] CHRIST A, ZENTGRAF T, KUHL J, et al. Optical Properties of Planar Metallic Photonic Crystal Structures: Experiment and Theory[J]. Phys. Rev. B, 2004, 70(12): 1251131-5.

冯月, 沈涛, 胡超. 磁光光子晶体结构的法拉第效应增强[J]. 光学技术, 2017, 43(4): 294. FENG Yue, SHEN Tao, HU Chao. Faraday effect enhancement of magnetophotonic crystals[J]. Optical Technique, 2017, 43(4): 294.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!