中国激光, 2006, 33 (10): 1349, 网络出版: 2006-10-31   

基于光学方法的太赫兹辐射源

Generation of Terahertz Wave Based on Optical Methods
作者单位
天津大学精密仪器与光电子工程学院激光与光电子研究所,光电信息技术科学教育部重点实验室, 天津 300072
摘要
太赫兹波技术在物理、化学、生命科学等基础研究学科,以及医学成像、安全检查、产品检测、空间通信、**制导等应用学科都具有重要的研究价值和应用前景,而太赫兹辐射源正是太赫兹技术发展的关键部分。概述了基于光学方法产生太赫兹辐射的几种常用方法,着重叙述了利用非线性光学差频技术和基于横向晶格振动光学模受激电磁耦子散射过程的太赫兹参量振荡技术工作原理,以及目前的研究状况,并对这两种方法产生太赫兹波辐射源未来的发展方向进行了展望。
Abstract
The terahertz (THz) technique has attracted much attention from a variety of applications in fundamental and applied research field, such as physics, chemistry, life sciences, medical imaging, safety inspection, radio astronomy, modern communication, weapon guidance and so on. THz radiation source is a crucial part of THz techniques system. Some typical techniques of the generation of THz radiation based on the optical methods, especially the nonlinear optical process such as difference frequency generation (DFG) and THz parametric generation (TPG) based on stimulated polariton scattering process, are briefly introduced and reviewed. The future of these two kinds of THz generation methods is also forecast.
参考文献

[1] . Siegel. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

[2] . Materials for terahertz science and technology[J]. Physics, 2003, 32(5): 287-293.

[3] M. S. Sherwin, C. A. Schmuttenmaer, P. H. Bucksbaum, Enditors. Opportunities in THz Science [R]. DOE-NSF-NIH Workshop, Arlington, VA, 2004

[4] . Yu. Tretyakov, S. A. Volokhov, G. Yu. Golubyatnikov et al.. Compact tunable radiation source at 180-1500 GHz frequency range[J]. Int. Journal of Infrared Millimeter Waves, 1999, 20(8): 1443-1451.

[5] . Komiyama. Far-infrared emission from population-inverted hot-carrier system in p-Ge[J]. Phys. Rev. Lett., 1982, 48(4): 271-274.

[6] . Bründermann, A. M. Linhart, H. P. Rser et al.. Miniaturization of p-Ge lasers: Progress toward continuous wave operation[J]. Appl. Phys. Lett., 1996, 68(10): 1359-1361.

[7] . Infrared quantum cascade lasers[J]. Physics, 2001, 30(10): 596-601.

[8] Li Qi, Wang Qi, Shang Tieliang. Development and application of quantum cascade lasers [J]. Laser & Infrared, 2001, 31(2):73~75
李琦,王骐,尚铁梁. 量子级联激光器的发展及其应用[J]. 激光与红外, 2001, 31(2):73~75

[9] . The generation and linewidth control of terahertz waves by parametric processes[J]. Electron. Comm. in Japan, Part 2, 2003, 86(5): 52-63.

[10] . , Baeyer O. V.. On extremely long waves emitted by the quartzMercury lamp[J]. Phil. Mag., 1911, 21: 689-703.

[11] http://www.coherent.com.cn/downloads/co2%20lasers/OpticallyPumped Laser.pdf

[12] Gregory S. Herman. Far infrared spectra of nonlinear optical crystals [C]. SPIE, 1994, 2379:291~297

[13] . Hamster, A. Sullivan, S. Gordon et al.. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Phys. Rev. Lett., 1993, 71(17): 2725-2728.

[14] . Hamster, A. Sullivan, S. Gordon et al.. Short-pulse terahertz radiation from high-intensity-laser-produced plasma[J]. Phys. Rev. E, 1994, 49(1): 671-677.

[15] . J. Cook, R. M. Hochstrasser. Intense terahertz pulses by four-wave rectification in air[J]. Opt. Lett., 2000, 25(16): 1210-1212.

[16] . . Terahertz-pulse generation by photoionization of air of both fundamental and second-harmonic waves[J]. Opt. Lett., 2004, 29(10): 1120-1122.

[17] . -C. Zhang. Coherent control of THz wave generation in ambient air[J]. Phys. Rev. Lett., 2006, 96: 075005-1.

[18] . Terahertz wave parametric source[J]. J. Phys. D: Appl. Phys., 2002, 35: R1-R14.

[19] . . Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler[J]. Appl. Phys. Lett., 1996, 68(18): 2483-2485.

[20] . . Injection-seeded teraherz-wave parametric oscillator[J]. Appl. Phys. Lett., 2001, 78(8): 1026-1028.

[21] . , Paul R. Berman. Generation of far infrared as a difference frequency[J]. Phys. Rev. Lett., 1965, 15(26): 999-1002.

[22] . L. Aggarwal, B. Lax, H. R. Fetterman et al.. CW generation of tunable narrow-band far-infrared radiation[J]. J. Appl. Phys., 1974, 45(9): 3972-3974.

[23] . H. Yang, J. R. Morris, P. L. Richards et al.. Phase-matched far-infrared generation by optical mixing of dye laser beams[J]. Appl. Phys. Lett., 1973, 23(12): 669-671.

[24] . Tanabe, K. Suto, J. Nishizawa et al.. Frequence-tunable high-power terahertz wave generation from GaP[J]. J. Appl. Phys., 2003, 93(8): 4610-4615.

[25] . Tanabe, K. Suto, J. Nishizawa et al.. Tunable terahertz wave generation in the 3- to 7-THz region from GaP[J]. Appl. Phys. Lett., 2003, 83(2): 237-239.

[26] . Ding. Tunable terahertz waves generated by mixing two copropagating infrared beams in GaP[J]. Opt. Lett., 2005, 30(9): 1030-1032.

[27] . Ding, Nils Fernelius et al.. Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal[J]. Opt. Lett., 2002, 27(16): 1454-1456.

[28] . Ding. Continuously tunable and coherent terahertz radiation by means of phasematched difference-frequency generation in zinc germanium phosphide[J]. Appl. Phys. Lett., 2003, 83(5): 848-850.

[29] . Ding, Peter G. Schunemann. Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal:improvements on tuning ranges and peak powers[J]. Opt. Commun., 2004, 233: 183-189.

[30] . . Tunable terahertz-wave generation from DAST cystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Opt. Lett., 2000, 25(23): 1714-1716.

[31] . E. Powers, R. A. Alkuwari, J. W. Haus et al.. Terahertz generation with tandem seeded optical parametric generators[J]. Opt. Lett., 2005, 30(6): 640-642.

[32] Messaoud Bahoura, Gregory S. Herman, Norman P. Barnes et al.. Terahertz wave source via difference-frequency mixing using cross-Reststrahlen band dispersion compensation phase matching: a material study [C]. SPIE, 2000, 3928:132~140

[33] . Ding, Ioulia B. Zotova. Coherent and tunable terahertz oscillators, generators, and amplifiers[J]. Journal of Nonlinear Optical Physics & Materials, 2002, 11(1): 75-97.

[34] . Ding, Wei Shi. Widely-tunable, monochromatic, and high-power terahertz sources and their applications[J]. Journal of Nonlinear Optical Physics & Materials, 2003, 12(4): 557-585.

[35] . L. Aggarwal, B. Lax, G. Favrot. Nonlinear phase matching in GaAs[J]. Appl. Phys. Lett., 1973, 22(7): 329-330.

[36] . Flore, V. Berger, E. Rosencher et al.. Phase mathching using an isotropic nonlinear optical material[J]. Nature, 1998, 391(6666): 463-466.

[37] . P. Van der Ziel. Phased-mathched harmonic generation in a laminar structure with wave propagation in the plane of the layers[J]. Appl. Phys. Lett., 1975, 26(2): 60-62.

[38] . Far-infrared properties of DAST[J]. Opt. Lett., 2000, 25(12): 911-913.

[39] . . Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal[J]. Appl. Phys. Lett., 2002, 81(18): 3323-3325.

[40] . Verghese, K. A. McIntosh, E. R. Brown. Optical and terahertz power limits in the low-temperature-grown GaAs photomixers[J]. Appl. Phys. Lett., 1997, 71(19): 2743-2745.

[41] V. Krozer, B. Leone, H. Roskos et al.. Optical far-IR wave generation -state-of-the-art and advanced device structures [C]. SPIE, 2004, 5466:178~192

[42] E. R. Brown, S. Verghese, K. A. McIntosh. Terahertz photomixing in low-temperature-grown GaAs [C]. SPIE, 1998, 3357:132~142

[43] . A. Piestrup, R. N. Fleming, R. H. Pantell. Continuously tunable submillimeter wave source[J]. Appl. Phys. Lett., 1975, 26(8): 418-421.

[44] . M. Yarborough, S. S. Sussman, H. E. Purpoff et al.. Efficient, tunable optical emission from LiNbO3 without a resonator[J]. Appl. Phys. Lett., 1969, 15(3): 102-105.

[45] . C. Johnson, H. E. Puthoff, J. Soohoo et al.. Power and linewidth of tunable stimulated far-infrared emission in LiNbO3[J]. Appl. Phys. Lett., 1971, 18(5): 181-183.

[46] . . Arrayed silicon prism coupler for a terahertz-wave parametirc oscillator[J]. Appl. Opt., 2001, 40(9): 1423-1426.

[47] . . Enhancement of terahertz-wave output from LiNbO3 optical parametirc oscillators by cryogenic cooling[J]. Opt. Lett., 1999, 24(4): 202-204.

[48] . . Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO∶LiNbO3 crystals[J]. IEEE Transactions on Microwave Theory Techniques, 2000, 48(4): 653-661.

[49] . . Transform-limited, narrow-linewidth, terahertz-wave parametric generator[J]. Appl. Phys. Lett., 2001, 78(19): 2819-2821.

[50] . Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd∶YAG laser[J]. Review of Scientific Instruments, 2001, 72(9): 3501-3504.

[51] S. Hayashi, H. Minamide, T. Ikari et al.. Palmtop terahertz-wave parametric generators [C]. 2005 Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Terahertz Electronics, 2005:399~400

[52] . C. Chiang, T. D. Wang, Y. Y. Lin et al.. Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies[J]. Opt. Lett., 2005, 30(24): 3392-3394.

孙博, 姚建铨. 基于光学方法的太赫兹辐射源[J]. 中国激光, 2006, 33(10): 1349. 孙博, 姚建铨. Generation of Terahertz Wave Based on Optical Methods[J]. Chinese Journal of Lasers, 2006, 33(10): 1349.

本文已被 24 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!