发光学报, 2017, 38 (12): 1629, 网络出版: 2017-12-25   

光浴对CH3NH3PbI3薄膜光致发光量子效率的影响

Effect of Light Soaking on Photoluminescence Quantum Efficiency of CH3NH3PbI3 Films
作者单位
1 河北大学物理科学与技术学院 河北省光电信息材料重点实验室, 河北 保定 071002
2 石家庄铁道大学 材料科学与工程学院, 河北 石家庄 050043
摘要
研究了CH3NH3PbI3薄膜在光浴条件下的光致发光量子效率演化行为。在光浴过程中, CH3NH3PbI3薄膜的光致发光量子效率表现为先增大再减小的变化趋势。发光动力学测量实验表明, 在光浴过程中, CH3NH3PbI3薄膜的载流子复合寿命与光致发光量子效率具有相同的变化趋势, 即先增大再减小。根据实验结果可以推断, 光浴引发CH3NH3PbI3薄膜发生两种物理过程, 分别使其光致发光量子效率升高和降低。两种过程共同决定了CH3NH3PbI3薄膜在光浴条件下的光致发光量子效率演化行为。
Abstract
The photoluminescence quantum efficiency evolution of CH3NH3PbI3 films was studied in this paper. During the light soaking the photoluminescence quantum efficiency of CH3NH3PbI3 films increases first, then decreases gradually. The photoluminescence dynamics measurement shows that the carrier recombination lifetime changes synchronously with that of photoluminescence quantum efficiency. According to the above experimental phenomena, we propose that the light soaking induces two processes of opposite direction to CH3NH3PbI3 films. One process would increase the photoluminescence quantum efficiency of CH3NH3PbI3 film, and the other one would reduce its photoluminescence quantum efficiency. Both processes determine the evolution of photoluminescence quantum efficiency of CH3NH3PbI3 films together.
参考文献

[1] 魏静, 赵清, 李恒, 等. 钙钛矿太阳能电池:光伏领域的新希望 [J]. 中国科学:技术科学, 2014, 44(8):801-821.

    WEI J, ZHAO Q, LI H, et al.. Perovskite solar cells: new hope in the field of photovoltaic [J]. Sci. China: Technol. Sci., 2014, 44(8):801-821. (in Chinese)

[2] GIORGI G, FUJISAWA J I, SEGAWA H, et al.. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis [J]. Phys. Chem. Lett., 2013, 4(24):4213-4216.

[3] HEO J H, IM S H, NOH J H, et al.. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors [J]. Nat. Photon., 2013, 7(6):486-491.

[4] STRANKS S D, EPERON G E, GRANCINI G, et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156):341-344.

[5] GUO Z, MANSER J S, WAN Y, et al.. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy [J]. Nat. Commun., 2015, 6:7471-7478.

[6] NREL. Best research-cell efficiencies [EB/OL].[2017-04-20].https://www.nrel.gov/pv/assets/images/efficiency-chart.png.

[7] BURSCHKA J, PELLET N, MOON S J, et al.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499:316-319.

[8] LEIJTENS T, EPERON G E, PATHAK S, et al.. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells [J]. Nat. Commun., 2013, 4:2885-2893.

[9] NOH J H, IM S H, HEO J H, et al.. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells [J]. Nano Lett., 2013, 13(4):1764-1769.

[10] BARROWS A T, PEARSON A J, KWAK C K, et al.. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition [J]. Energy Environ. Sci., 2014, 7:2944-2952.

[11] UNGER E L, HOKE E T, BAILIE C D, et al.. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells [J]. Energy Environ. Sci., 2014, 7:3690-3698.

[12] TRESS W, MARINOVA N, MOEHL T, et al.. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field [J]. Energy Environ. Sci, 2015, 8:995-1004.

[13] ZHAO C, CHEN B B, QIAO X F, et al.. Revealing underlying processes involved in light soaking effects and hysteresis phenomena in perovskite solar cells [J]. Adv. Energy Mater., 2015, 5(14):1500279-1500285.

[14] TIAN Y X, PETER M, UNGER E, et al.. Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold [J]. Phys. Chem. Chem. Phys., 2015, 17(38):24978-24987.

[15] GOTTESMAN R, GOUDA L, KALANOOR B S, et al... Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films [J]. J. Phys. Chem. Lett., 2015, 6(12):2332-2338.

[16] GALISTEO-LPEZ J F, ANAYA M, CALVO M E, et al.. Environmental effects on the photophysics of organic-inorganic halide perovskites [J]. J. Phys. Chem. Lett., 2015, 6(12):2200-2205.

[17] STRANKS S D, BURLAKOV V M, LEIJTENS T, et al.. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states [J]. Phys. Rev. Appl., 2014, 2(3):0340071-03400778.

[18] SHI D, ADINOLFI V, COMIN R, et al.. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals [J]. Science, 2015, 347(6221):519-522.

[19] MILOT R L, EPERON G E, SNAITH H J, et al.. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films [J]. Adv. Funct. Mater, 2015, 25(39):6218-6227.

[20] MANSER J S, KAMAT P V. Band filling with free charge carriers in organometal halide perovskites [J]. Nat. Photon., 2014, 8(9):737-744.

[21] DEQUILETTES D W, ZHANG W, BURLAKOV V M, et al.. Photo-induced halide redistribution inorganic-inorganic perovskite films [J]. Nat. Commun., 2016, 7(11683):1-4.

[22] CHEN S, WEN X M, SHENG R, et al.. Mobile ion induced slow carrier dynamics in organic-inorganic perovskite CH3NH3PbBr3[J]. ACS Appl. Mater. Interf., 2016, 8(8):5351-5357.

[23] COTTESMAN R, HALTZI E, GOUDA L, et al.. Extremely slow photoconductivity response of CH3NH3PbI3 perovskite suggesting structural changes under working conditions [J]. J. Phys. Chem. Lett., 2014, 5:2662.

[24] EGGER D A, KRONIK L, RAPP A M. Theory of hydrogen migration in organic-inorganic halide perovskite [J]. Angew. Chem. Int. Ed.. 2015, 54(42):12437-12441.

[25] AZPIROZ J M, MOSCONI E, BISQUERT J, et al.. Migration in methylammonium lead iodide and its role in perovskite solar cell operation [J]. Energy Environ. Sci., 2015, 8(7):2118-2127.

[26] EAMES C, FROST J M, BARNES P R, et al.. Ionic transport in hybrid lead iodide perovskite solar cells [J]. Nat. Commun., 2015, 6:7497.

[27] MOTTA C, EIMELLOUHI F, KAIS S, et al.. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3[J]. Nat. Commun., 2015, 6:7026-7033.

[28] ZHOU Y, LU Y, WANG S W, et al.. Giant photostriction in organic-inorganic lead halide perovskites [J]. Nat. Commun., 2016, 7:11193.

刘旭, 白晶晶, 张荣香, 赵晋津, 党伟, 张连水. 光浴对CH3NH3PbI3薄膜光致发光量子效率的影响[J]. 发光学报, 2017, 38(12): 1629. LIU Xu, BAI Jing-jing, ZHANG Rong-xiang, ZHAO Jin-jin, DANG Wei, ZHANG Lian-shui. Effect of Light Soaking on Photoluminescence Quantum Efficiency of CH3NH3PbI3 Films[J]. Chinese Journal of Luminescence, 2017, 38(12): 1629.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!