光学学报, 2017, 37 (10): 1030001, 网络出版: 2018-09-07   

碱土金属离子共掺杂对铕离子在Ca12Al14O32F2中发光性能的影响 下载: 625次

Effect of Alkaline Earth Ion Co-Doping on Photoluminescence from Europium Ion in Ca12Al14O32F2
作者单位
广西师范学院化学与材料科学学院, 广西 南宁 530001
摘要
采用高温固相还原法合成Ca12-x-yMxAl14O32F2yEu(M=Mg, Sr, Ba)体系荧光粉,分别采用X射线粉末衍射仪和荧光光谱仪测试其物相及荧光性能,通过掺杂碱土金属离子可以调整Ca12Al14O32F2∶Eu 3+ /Eu 2+的组成和结构,进而影响Ca12-x-yMxAl14O32F2yEu的发光性能。研究结果表明:在Ca12Al14O32F2∶Eu中掺杂一定浓度的Mg 2+不利于Eu 3+的还原,掺杂一定浓度的Sr 2+或Ba 2+有利于Eu 3+的还原;通过改变碱土金属离子的掺杂浓度调节Eu 3+和Eu 2+的浓度比,可以调整蓝光发射和红光发射的强度比,进而使发光颜色从蓝色变为淡紫色,再变为蓝绿色。
Abstract
A series of phosphors Ca12-x-yMxAl14O32F2∶yEu (M=Mg, Sr, Ba) are synthesized by the high temperature solid-state reaction, and their phases and fluorescence properties are tested by using X-ray powder diffractometer and fluorescent spectroscope. The composition and structure of Ca12Al14O32F2∶Eu 3+ /Eu 2+ can be adjusted by doping alkaline metal ions, and the luminescent properties of Ca12-x-yMxAl14O32F2∶yEu (M=Mg, Sr, Ba) are affected. The results show that doping Mg 2+ in Ca12Al14O32F2∶Eu is not conducive to the reduction of Eu 3+, but doping Sr 2+ or Ba 2+ is helpful for the reduction of Eu 3+. Adjusting the concentration ratio of Eu 3+ to Eu 2+ by changing the doping concentration of alkaline earth metal ions, the intensity ratio of blue to red can be adjusted, and the color of the samples can be adjusted from blue to lavender, and to bluish green.

1 引言

稀土铕离子具有丰富的电子能级,常被用作荧光粉的激活剂[1-2]。在铕离子的2种价态中,Eu3+的f➝f禁阻跃迁呈尖峰发射[3-4],而Eu2+的d➝f跃迁呈宽峰发射[5-6]。在单一荧光基质中,若能使Eu3+和Eu2+共存,或使Eu3+较多地转化为Eu2+,就可调整Eu3+的红光发射与Eu2+的蓝光发射,从而有可能得到蓝白光荧光粉,甚至得到白光荧光粉。近年来,不少文献报道了Eu3+和Eu2+的共存体系,如磷酸盐、硼酸盐、硅酸盐和铝酸盐[1,2,7-13],但对氟铝酸盐体系的报道还很少[14-15]。氟铝酸盐Ca12Al14O32F2为立方晶体结构,具有透光范围宽、折射率低和化学性能稳定等特点,常被用作荧光粉的基质[14-17]。Huang等[14]采用高温固相法在还原氛围下合成了Ca12Al14O32F2∶Eu荧光粉,通过掺杂少量硅离子,使Si4+-O2-部分取代Al3+-F-,从而使Eu3+还原为Eu2+。陈彩花等[15]采用燃烧法在空气氛围下合成Ca12Al14O32F2∶Eu荧光粉,还原剂尿素和氟化铵将一部分Eu3+还原为Eu2+。Peng等[16]采用溶胶凝胶法在空气氛围下合成Ca12Al14O32F2∶Eu时[16],主要得到了Eu3+掺杂的荧光粉,但发射光谱中出现了极微弱的Eu2+发射峰,这应该是干胶在热处理过程中产生的还原气氛造成的。本文利用高温固相还原法在Ca12Al14O32F2∶Eu体系中掺杂少量碱土金属离子(Mg, Sr, Ba),通过改变碱土金属离子的掺杂浓度改变激活离子存在的晶胞局部环境,进而调节Eu3+和Eu2+的浓度比,最终达到调节蓝光发射和红光发射的强度比。目前,已有文献报道了碱土金属离子的尺寸效应对MAl2Si2O8∶Eu3+/Eu2+(M=Ca, Sr, Ba)[18]MAl2O4∶Eu2+ (Eu3+)/Dy3+(M=Sr, Ca, Ba)[19]和(Sr,Ca)AlSiN3∶Eu[20]荧光性能的影响,但鲜有对Ca12-xMxAl14O32F2∶Eu(M=Mg, Sr, Ba)荧光性能影响的报道。

2 实验部分

根据Ca12-x-yMxAl14O32F2yEu(M=Mg, Sr, Ba)的化学计量比,分别称取反应原料CaCO3、CaF2MCO3、Al2O3和Eu2O3(原料均为分析纯),放置于玛瑙研钵中研磨0.5 h,混合均匀后将混合物转移至刚玉坩埚中,在还原性气氛(N2和H2的体积比为9∶1)下煅烧4 h,煅烧温度为1523 K,自然冷却至室温后研磨,得到目标产物。

采用XD-3型X射线衍射仪(XRD)测试目标产物的物相,铜靶(Kα射线,λ=0.15406 nm),管电压为 36 kV,管电流为25 mA,扫描速度为8 (°)/min,扫描范围 2θ=10°~90°,步宽为0.02°。采用日立F-2500型荧光光谱仪测试荧光性能,激发光源采用150 W的氙气灯,扫描范围为220~730 nm,滤波片的波长为400 nm。

3 结果与讨论

Ca12Al14O32F2为立方晶系结构[14,17],空间群为I43d(220),单胞内原子数Z=2,晶格常数a=1.1963 nm,晶胞体积V=1.7121 nm3。在Ca12Al14O32F2晶胞结构中,Ca2+的配位数为7,配位离子为1个F-和6个O2-。由于Eu2+和Eu3+的半径和Ca2+的半径相差不大,进入基质的铕离子主要取代Ca2+的位置。Eu3+取代Ca2+引起的电荷不平衡可通过调整F-和O2-的计量比使阳离子空缺和氧间隙形成而得到补偿。由于激活离子Eu2+和Eu3+要取代的是Ca2+,若Ca2+被其他碱土金属离子部分取代,则势必会影响激活离子Eu2+和Eu3+所处的局部微观环境,进而影响其发光性能。表1为Ca2+配位数为7时各金属离子的半径r及其相对半径rr=[r(M2+)-r(Ca2+)]/r(Ca2+)。由表1可知,Mg2+、Sr2+、Ba2+、Eu2+和Eu3+的相对半径分别为-24.1%、14.1%、30.2%、13.2%和-4.7%。Eu3+与Ca2+的半径相当,但电荷不匹配,其他金属离子与Ca2+的电荷匹配,但半径相差较大,尤其是Ba2+

表 1. Ca2+配位数为7时各金属离子的半径及相对半径

Table 1. Radius and relative radius of metal ions when the coordination number of Ca2+ is 7

IonCa2+Mg2+Sr2+Ba2+Eu2+Eu3+
r /nm0.1060.0810.1210.1380.1200.101
rr /%-24.114.130.213.2-4.7

查看所有表

图1为Ca12-x-yMxAl14O32F2yEu(M=Mg, Sr, Ba; x=0.00, 0.12, 0.36, 0.60, 0.84, 1.20; y=0.10, 0.48)的XRD谱。由图1可以看出:当M=Mg,Sr时,XRD谱与标准图谱(JCPDS No.53-1232)一致,说明合成样品均为纯的立方相;当M=Ba,且x<0.60时,样品为纯的立方相,当x≥0.60时,在2θ=28.28°处出现了明显的杂峰。由于Mg2+的半径较Ca2+的半径小,根据布拉格方程,Mg2+部分取代Ca2+后会导致衍射峰向大角度方向移动,但由图1(b)可知这种移动不明显。Sr2+和Ba2+的半径大于Ca2+的半径,Sr2+或Ba2+部分取代Ca2+后会导致衍射峰向小角度方向移动。当Sr2+的掺杂浓度由x=0.00变化到1.20时,在2θ为27°~29°的范围内,图1(d)中的衍射峰由27.87°移动到27.80°,图1(f)的衍射峰由28.06°移动到27.89°。当Ba2+的掺杂浓度由x=0.00变化到1.20时,图1(h)的衍射峰由27.89°移动到27.81°。

图 1. Ca12-x-yMxAl14O32F2∶yEu的XRD图谱。(a)(b) M=Mg, y=0.10; (c)(d) M=Sr, y=0.10; (e)(f) M=Sr, y=0.48; (g)(h) M=Ba,y=0.10; (i)(j) M=Ba, y=0.48

Fig. 1. XRD patterns of Ca12-x-yMxAl14O32F2∶yEu. (a)(b) M=Mg, y=0.10; (c)(d) M=Sr, y=0.10; (e)(f) M=Sr, y=0.48; (g)(h) M=Ba, y=0.10; (i)(j) M=Ba, y=0.48

下载图片 查看所有图片

铕离子及碱金属离子少量掺杂取代Ca2+对衍射峰角度的影响同样反映在晶胞参数上,Ca12-x-yMxAl14O32F2yEu的晶胞参数随掺杂浓度的变化如表2所示。从表2可以看出:掺杂Mg2+后,晶胞体积变小,但晶胞体积随掺杂浓度的变化不明显;掺杂Sr2+或Ba2+后,晶胞体积增大,且随掺杂浓度增大而显著增大。

表 2. Ca12-x-yMxAl14O32F2∶yEu的晶胞参数

Table 2. Cell parameters of Ca12-x-yMxAl14O32F2∶yEu

ParameterCa12-x-yMxAl14O32F2yEux=0.00x=0.12x=0.36x=0.60x=0.84x=1.20
a /nmM=Mg,y=0.101.19671.19461.19631.19541.19631.1957
M=Sr,y=0.101.19671.19711.19781.19821.19891.1996
M=Sr,y=0.481.19771.19741.19861.20021.20031.2016
M=Ba,y=0.101.19671.19711.19791.19871.19871.1988
M=Ba,y=0.481.19811.19831.19821.19901.19971.1994
V /nm3M=Mg,y=0.101.71391.70491.71191.70801.71221.7095
M=Sr,y=0.101.71391.71531.71831.72011.72321.7262
M=Sr,y=0.481.71801.71681.72201.72871.72911.7350
M=Ba,y=0.101.71381.71541.71891.72241.72221.7230
M=Ba,y=0.481.71981.72051.72011.72391.72661.7254

查看所有表

图2为Ca11.90-xMgxAl14O32F2∶0.10Eu(x=1.20)的激发光谱和发射光谱。当激发波长为444 nm时,激发峰由225~280 nm和280~400 nm宽带组成,前者归属于O2--Eu3+的电荷迁移吸收,后者归属于Eu2+的4f➝5d的能级跃迁吸收。此外,在波长小于225 nm范围有一个不完整的强吸收带(测试条件所限),可能是基质的吸收峰。激发波长为614 nm时,激发峰为位于220~280 nm的强带(激发主峰位于240 nm附近),归属于O2- -Eu3+的电荷迁移吸收。在237 nm或261 nm光激发下,样品发射蓝光(400~500 nm)和红光(580~620 nm),宽峰蓝光发射归属于Eu2+的4f65d1→4f7跃迁,锐锋红光发射归属于Eu3+5D07F0(588 nm)、5D07F1(597 nm)和5D07F2(614 nm)跃迁。说明合成过程中部分Eu3+被还原成Eu2+,Eu2+和Eu3+共存于合成样品中。在237 nm光激发下,体系吸收主要是O2--Eu3+的电荷迁移,导致Eu3+的发光强于Eu2+的发光。在312 nm光激发下,荧光粉主要发射400~500 nm范围的蓝光。

图 2. Ca11.90-xMgxAl14O32F2∶0.10Eu(x=1.20)的激发光谱和发射光谱

Fig. 2. Excitation and emission spectra of Ca11.90-xMgxAl14O32F2∶0.10Eu (x=1.20)

下载图片 查看所有图片

图3为Ca11.90-xMgxAl14O32F2∶0.10Eu的发射光谱和相应的国际照明委员会(CIE)制定的色度坐标图。由图3(a)、(b)可以看出,在237 nm或261 nm光激发下,未掺杂Mg2+时可以观察到444 nm处的蓝光发射与614 nm处的红光发射,说明还原条件可使Ca11.90Al14O32F2∶0.10Eu中的Eu3+还原。随着Mg2+掺杂浓度

图 3. Ca11.90-xMgxAl14O32F2∶0.10Eu的(a)~(c)发射光谱及对应的(d)CIE色度坐标图

Fig. 3. (a)-(c) Emission spectra of Ca11.90-xMgxAl14O32F2∶0.10Eu and (d) CIE chromaticity diagram

下载图片 查看所有图片

增大,蓝光发射强度降低,红光发射强度增强。图3(d)所示的CIE色度坐标图显示,发光颜色向暖白光区域移动。在312 nm光激发下,随着Mg2+掺杂浓度增大,蓝光发射强度降低,发光颜色均落在蓝光区。图3说明,在Ca11.90Al14O32F2∶0.10Eu中掺杂Mg2+不利于Eu3+的还原。这是因为半径更小的Mg2+部分取代Ca2+后,会造成晶格的局域收缩(表2),不利于半径更大的Eu2+的生成。由此可知,通过掺杂一定浓度的Mg2+可以调整Ca11.90-xMgxAl14O32F2∶0.10Eu中Eu2+和Eu3+的比例,进而调整蓝光发射和红光发射的强度比,得到暖白色的发光。

图4为Sr2+掺杂浓度对铕离子发光性能的影响。由图4(a)、(b)可以看出,在237 nm或261 nm光激发下,随着Sr2+掺杂浓度增大,蓝光发射强度呈增强的趋势,而红光发射强度呈逐渐减弱的趋势。对应的CIE色度坐标的变化趋势与Mg2+掺杂的相反,发光颜色由暖白光区域向冷光区域移动。在318 nm光激发下,随着Sr2+掺杂浓度增大,蓝光发射明显增强,如图4(c)所示。图4的现象说明在Ca12-x-yAl14O32F2yEu中掺杂一定浓度的Sr2+有利于Eu3+的还原。这是因为,当半径更大的Sr2+部分取代Ca2+后,会造成晶格局域膨胀(表2),有利于离子半径与Sr2+相当的Eu2+的生成。通过掺杂一定浓度的Sr2+可以调整Ca12-x-ySrxAl14O32F2yEu中Eu2+和Eu3+的比例,进而调整蓝光发射和红光发射的强度比,改变发光的色调。

图 4. (a)(b) Ca11.90-xSrxAl14O32F2∶0.10Eu的发射光谱;(c) Ca11.52-xSrxAl14O32F2∶0.48Eu的发射光谱;(d) Ca12-x-ySrxAl14O32F2∶yEu(y=0.10, 0.48)发射光谱对应的CIE色度坐标图

Fig. 4. (a)(b) Emission spectra of Ca11.90-xSrxAl14O32F2∶0.10Eu; (c) emission spectra of Ca11.52-xSrxAl14O32F2∶0.48Eu emission spectra; (d) CIE chromaticity diagrams of Ca12-x-ySrxAl14O32F2∶yEu (y=0.10, 0.48)

下载图片 查看所有图片

图5为Ba2+掺杂浓度对铕离子发光性能的影响。由图5(a)、(b)可以看出:在237 nm或261 nm光激发下,随着x由0.00增大至0.60,蓝光先增强后明显猝灭,红光发射强度减弱;当x=0.84和x=1.20时,蓝光和红光发射强度又有所回升,这可能与XRD图谱中出现的杂相有关;此外,蓝光发射峰位置明显红移;对应的CIE色度坐标变化趋势与掺杂Mg2+的变化趋势相似,发光颜色向暖白光区域移动。在312 nm光激发下,随着Ba2+掺杂浓度增大,蓝光发射也是先增强后明显减弱再增强,如图5(c)所示,当x由0.00增大到1.20时,蓝光发射峰由444 nm红移至495 nm,其对应的CIE图颜色由蓝色向蓝绿色转变。图5的现象同样说明在Ca12-x-yBaxAl14O32F2yEu中掺杂少量Ba2+有利于Eu3+的还原,若掺杂浓度过高则不利于Eu3+的还原。这可能是因为Ba2+的半径很大,过量掺杂会造成局部晶格发生较大的畸变,一方面使阳离子和阴离子的作用增强,晶体场分裂能变大,造成Eu2+的蓝光发射红移,另一方面容易造成晶格坍塌,生成杂相,XRD图谱中出现的杂峰证实了这一点。对于Ca11.52-xBaxAl14O32F2∶0.48Eu,随着Ba2+掺杂浓度增大,在325 nm光激发下,蓝光发射增强,如图5(e)所示,这种变化趋势与Ca11.90-xBaxAl14O32F2∶0.10Eu的刚好相反,可能是因为随着Ba2+掺杂浓度增加,更多的Eu3+被还原为Eu2+

图 5. (a)~(c) Ca11.90-xBaxAl14O32F2∶0.10Eu的发射光谱;(d) Ca11.90-xBaxAl14O32F2∶0.10Eu的CIE色度坐标图;(e) Ca11.52-xBaxAl14O32F2∶0.48Eu的发射光谱;(f) Ca11.52-xBaxAl14O32F2∶0.48Eu的CIE色度坐标图

Fig. 5. (a)-(c) Emission spectra of Ca11.90-xBaxAl14O32F2∶0.10Eu; (d) CIE chromaticity diagrams of Ca11.90-xBaxAl14O32F2∶0.10Eu; (e) Emission spectra of Ca11.52-xBaxAl14O32F2∶0.48Eu; (f) CIE chromaticity diagrams of Ca11.52-xBaxAl14O32F2∶0.48Eu

下载图片 查看所有图片

4 结论

利用高温固相还原法合成了Eu3+和Eu2+共存的Ca12Al14O32F2∶Eu发光材料,通过碱土金属离子掺杂改变基质组成,调控铕离子晶胞的局部环境,进而调节Eu3+和Eu2+的浓度比,最终达到调整蓝光发射和红光发射强度比的目的。结果表明,在Ca12Al14O32F2∶Eu样品中掺杂一定浓度的Mg2+不利于Eu3+的还原,掺杂一定浓度的Sr2+或Ba2+有利于Eu3+的还原。改变碱土金属离子的掺杂浓度可以调整Eu2+的蓝光发射和Eu3+的红光发射的强度比,进而使样品的发光颜色从蓝色变为淡紫色,再变为蓝绿色。

参考文献

[1] Yu R J, Wang J, Zhao Z, et al. Structure and tunable blue-white-red luminescence of Eu 2+/Eu 3+-doped Na5Al(PO4)2F2 single-phase phosphor [J]. Materials Letters, 2015, 160: 294-297.

    Yu R J, Wang J, Zhao Z, et al. Structure and tunable blue-white-red luminescence of Eu 2+/Eu 3+-doped Na5Al(PO4)2F2 single-phase phosphor [J]. Materials Letters, 2015, 160: 294-297.

[2] Zhang J C, Long Y Z, Zhang H D, et al. Eu 2+/Eu 3+-emission-ratio-tunable CaZr(PO4)2∶Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs [J]. Journal of Materials Chemistry C, 2014, 2(2): 312-318.

    Zhang J C, Long Y Z, Zhang H D, et al. Eu 2+/Eu 3+-emission-ratio-tunable CaZr(PO4)2∶Eu phosphors synthesized in air atmosphere for potential white light-emitting deep UV LEDs [J]. Journal of Materials Chemistry C, 2014, 2(2): 312-318.

[3] Zhang Y, Kang X J, Geng D L, et al. Highly uniform and monodisperse GdOF∶Ln3+(Ln=Eu, Tb, Tm, Dy, Ho, Sm) microspheres: hydrothermal synthesis and tunable-luminescence properties [J]. Dalton Transactions, 2013, 42(39): 14140-14148.

    Zhang Y, Kang X J, Geng D L, et al. Highly uniform and monodisperse GdOF∶Ln3+(Ln=Eu, Tb, Tm, Dy, Ho, Sm) microspheres: hydrothermal synthesis and tunable-luminescence properties [J]. Dalton Transactions, 2013, 42(39): 14140-14148.

[4] 王林香. 合成条件对(Eu0. 045Li3xLuy)2O3纳米晶发光性能的影响[J]. 光学学报, 2016, 36(3): 0316001.

    王林香. 合成条件对(Eu0. 045Li3xLuy)2O3纳米晶发光性能的影响[J]. 光学学报, 2016, 36(3): 0316001.

    Wang Linxiang. Effect of synthesis conditions on luminescence properties of (Eu0.045Li3xLuy)2O3 nanocrystals by precipitation[J]. Acta Optica Sinica, 2016, 36(3): 0316001.

    Wang Linxiang. Effect of synthesis conditions on luminescence properties of (Eu0.045Li3xLuy)2O3 nanocrystals by precipitation[J]. Acta Optica Sinica, 2016, 36(3): 0316001.

[5] 游潘丽, 胡曰博. BaMgSiO4∶Eu 2+/Eu 3+可调白光发光材料的制备和性能研究 [J]. 光学学报, 2014, 34(5): 0516001.

    游潘丽, 胡曰博. BaMgSiO4∶Eu 2+/Eu 3+可调白光发光材料的制备和性能研究 [J]. 光学学报, 2014, 34(5): 0516001.

    You Panli, Hu Yuebo. Synthesis and properties of BaMgSiO4∶Eu 2+/Eu 3+ phosphor with color tunable white lighting [J]. Acta Optica Sinica, 2014, 34(5): 0516001.

    You Panli, Hu Yuebo. Synthesis and properties of BaMgSiO4∶Eu 2+/Eu 3+ phosphor with color tunable white lighting [J]. Acta Optica Sinica, 2014, 34(5): 0516001.

[6] Ji H P, Huang Z H, Xia Z G, et al. New yellow-emitting whitlockite-type structure Sr1.75Ca1.25(PO4)2∶Eu 2+ phosphor for near-UV pumped white light-emitting devices [J]. Inorganic Chemistry, 2014, 53(10): 5129-5135.

    Ji H P, Huang Z H, Xia Z G, et al. New yellow-emitting whitlockite-type structure Sr1.75Ca1.25(PO4)2∶Eu 2+ phosphor for near-UV pumped white light-emitting devices [J]. Inorganic Chemistry, 2014, 53(10): 5129-5135.

[7] Hou JS, Jiang WZ, Fang YZ, et al. Red, green and blue emissions coexistence in white-light-emitting Ca11( SiO4)4, 2013( 37): 5892- 5898.

    Hou JS, Jiang WZ, Fang YZ, et al. Red, green and blue emissions coexistence in white-light-emitting Ca11( SiO4)4, 2013( 37): 5892- 5898.

[8] Xu S C, Li P L, Wang Z J, et al. Luminescence and energy transfer of Eu 2+/Tb 3+/Eu 3+ in LiBaBO3 phosphors with tunable-color emission [J]. Journal of Materials Chemistry C, 2015, 3(35): 9112-9121.

    Xu S C, Li P L, Wang Z J, et al. Luminescence and energy transfer of Eu 2+/Tb 3+/Eu 3+ in LiBaBO3 phosphors with tunable-color emission [J]. Journal of Materials Chemistry C, 2015, 3(35): 9112-9121.

[9] Sokolnicki J, Zych E. Synthesis and spectroscopic investigations of Sr2Y8(SiO4)6O2∶Eu 2+, Eu 3+ phosphor for white LEDs [J]. Journal of Luminescence, 2015, 158: 65-69.

    Sokolnicki J, Zych E. Synthesis and spectroscopic investigations of Sr2Y8(SiO4)6O2∶Eu 2+, Eu 3+ phosphor for white LEDs [J]. Journal of Luminescence, 2015, 158: 65-69.

[10] Dai W B. Mechanism of the reduction and energy transfer between Eu 2+ and Eu 3+ in Eu-doped CaAl2Si2O8 materials prepared in air [J]. Journal of Materials Chemistry C, 2014, 2(20): 3951-3959.

    Dai W B. Mechanism of the reduction and energy transfer between Eu 2+ and Eu 3+ in Eu-doped CaAl2Si2O8 materials prepared in air [J]. Journal of Materials Chemistry C, 2014, 2(20): 3951-3959.

[11] Dobrowolska A, Zych E. Spectroscopic characterization of Ca3Y2Si3O12∶Eu 2+, Eu 3+ powders in VUV-UV-vis region [J]. The Journal of Physical Chemistry C, 2012, 116(48): 25493-25503.

    Dobrowolska A, Zych E. Spectroscopic characterization of Ca3Y2Si3O12∶Eu 2+, Eu 3+ powders in VUV-UV-vis region [J]. The Journal of Physical Chemistry C, 2012, 116(48): 25493-25503.

[12] Zhang Y, Li X J, Li K, et al. Crystal-site engineering control for the reduction of Eu 3+ to Eu 2+ in CaYAlO4 structure refinement and tunable emission properties [J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2715-2725.

    Zhang Y, Li X J, Li K, et al. Crystal-site engineering control for the reduction of Eu 3+ to Eu 2+ in CaYAlO4 structure refinement and tunable emission properties [J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2715-2725.

[13] Chen W P. Eu 2+ and Eu 3+ co-activated LaAlO3 phosphor: synthesis and tuned luminescence [J]. Dalton Transactions, 2015, 44(40): 17730-17735.

    Chen W P. Eu 2+ and Eu 3+ co-activated LaAlO3 phosphor: synthesis and tuned luminescence [J]. Dalton Transactions, 2015, 44(40): 17730-17735.

[14] Huang K W, Chen W T, Chu C I, et al. Controlling the activator site to tune europium valence in oxyfluoride phosphors[J]. Chemistry of Materials, 2012, 24(11): 2220-2227.

    Huang K W, Chen W T, Chu C I, et al. Controlling the activator site to tune europium valence in oxyfluoride phosphors[J]. Chemistry of Materials, 2012, 24(11): 2220-2227.

[15] 陈彩花, 彭海龙, 梁利芳, 等. 燃烧法可控制备Eu 3+-Eu 2+共存Ca12Al14O32F2荧光粉及其荧光性能的研究 [J]. 发光学报, 2016, 37(8): 932-939.

    陈彩花, 彭海龙, 梁利芳, 等. 燃烧法可控制备Eu 3+-Eu 2+共存Ca12Al14O32F2荧光粉及其荧光性能的研究 [J]. 发光学报, 2016, 37(8): 932-939.

    Chen Caihua, Peng Hailong, Liang Lifang, et al. Tunable luminescence of Ca12Al14O32F2∶Eu 2+, Eu 3+ phosphors prepared by combustion method [J]. Chinese Journal of Luminescence, 2016, 37(8): 932-939.

    Chen Caihua, Peng Hailong, Liang Lifang, et al. Tunable luminescence of Ca12Al14O32F2∶Eu 2+, Eu 3+ phosphors prepared by combustion method [J]. Chinese Journal of Luminescence, 2016, 37(8): 932-939.

[16] Peng H L, Gao Q S, Meng L L, et al. Sol-gel method and optical properties of Ca12Al14O32F2∶Eu 3+ red phosphors [J]. Journal of Rare Earths, 2015, 33(9): 927-932.

    Peng H L, Gao Q S, Meng L L, et al. Sol-gel method and optical properties of Ca12Al14O32F2∶Eu 3+ red phosphors [J]. Journal of Rare Earths, 2015, 33(9): 927-932.

[17] Guo C P, Shang S L, Du Z M, et al. Thermodynamic modeling of the CaO-CaF2-Al2O3 system aided by first-principles calculations[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 48: 113-122.

    Guo C P, Shang S L, Du Z M, et al. Thermodynamic modeling of the CaO-CaF2-Al2O3 system aided by first-principles calculations[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 48: 113-122.

[18] Zhang C M, Yang J, Lin C K, et al. Reduction of Eu 3+ to Eu 2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition [J]. Journal of Solid State Chemistry, 2009, 182(7): 1673-1678.

    Zhang C M, Yang J, Lin C K, et al. Reduction of Eu 3+ to Eu 2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition [J]. Journal of Solid State Chemistry, 2009, 182(7): 1673-1678.

[19] Chen X Y, Li Z, Bao S P, et al. Porous MAl2O4∶Eu 2+ (Eu 3+), Dy 3+ (M=Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: the effect of solvents [J]. Optical Materials, 2011, 34(1): 48-55.

    Chen X Y, Li Z, Bao S P, et al. Porous MAl2O4∶Eu 2+ (Eu 3+), Dy 3+ (M=Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: the effect of solvents [J]. Optical Materials, 2011, 34(1): 48-55.

[20] Tsai Y T, Chiang C Y, Zhou W, et al. Structural ordering and charge variation induced by cation substitution in (Sr, Ca)AlSiN3∶Eu phosphor[J]. Journal of American Chemical Society, 2015, 137(28): 8936-8939.

    Tsai Y T, Chiang C Y, Zhou W, et al. Structural ordering and charge variation induced by cation substitution in (Sr, Ca)AlSiN3∶Eu phosphor[J]. Journal of American Chemical Society, 2015, 137(28): 8936-8939.

陈彩花, 杨国辉, 蒙丽丽, 张丽霞, 梁利芳. 碱土金属离子共掺杂对铕离子在Ca12Al14O32F2中发光性能的影响[J]. 光学学报, 2017, 37(10): 1030001. Caihua Chen, Guohui Yang, Lili Meng, Lixia Zhang, Lifang Liang. Effect of Alkaline Earth Ion Co-Doping on Photoluminescence from Europium Ion in Ca12Al14O32F2[J]. Acta Optica Sinica, 2017, 37(10): 1030001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!