红外与毫米波学报, 2014, 33 (5): 560, 网络出版: 2014-11-06   

地物空间分布特性的高光谱遥感图像解混算法

Hyperspectral unmixing based on material spatial distribution characteristic
作者单位
国防科技大学 电子科学与工程学院, 湖南 长沙 410073
摘要
在高光谱遥感图像中, 地物的空间分布往往呈现两种特征: 一是都有各自的主导区域;二是在地表空间上分布连续.利用这两种先验信息, 分别引入了对丰度的正交约束与平滑约束, 提出了一种基于丰度约束的非负矩阵分解算法.为进一步地提高算法的性能, 另外还提出了一种新的算法停止准则及权重因子调整策略, 以适应信噪比以及像元混合程度的变化.在仿真数据和实测数据上的实验结果表明, 该算法不仅能很好地表征地物的分布特征, 提高解混精度, 而且在信噪比较低, 无纯像元的条件下, 仍然能得到较好的解混结果.
Abstract
In hyperspectral remote sensing imagery, material usually present two spatial distribution characteristics: one is its dominance in some special areas, another is its consistency on the land surface. By utilizing this two prior information, we propose an algorithm named nonnegative matrix factorization (NMF) with abundance constraint, which introduces both orthogonality and smoothness into abundance. To further improve the algorithm performance, we also propose a new stop criterion and an adjusting method of adapting weight factor to the varying signal-to-noise (SNR) and mixing degree. Experimental results based on synthetic and real hyperspectral data show that our algorithm not only represents material distribution characteristics very well, but also increases the unmixing accuracy. Meanwhile, the algorithm can lead to satisfactory unmixing results under the conditions of low SNR and no pure pixels.
参考文献

[1] Chang C. HYPERSPECTRAL DATA EXPLOITATION: THEORY AND APPLICATIONS[M]. Hoboken, New Jersey: A JOHN WILEY & SONS, INC., 2007.

[2] Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Process. Mag. 2002, 19(1): 44-57.

[3] Chang C, Plaza A. A Fast Iterative Algorithm for Implementation of Pixel Purity Index[J]. IEEE Geosci. Remote Sens. Lett. 2006, 3(1): 63-67.

[4] Nascimento J M P, Bioucas-Dias J M. Vertex Component Analysis A Fast Algorithm to Unmix Hyperspectral Data[J]. IEEE Trans. Geosci. Remote Sens. 2004, 43(8): 898-910.

[5] Winter M E. N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data[C]. International Society for Optics and Photonics, 1999.

[6] Ambikapathi A, Chan T, Chi C, et al. Hyperspectral Data Geometry Based Estimation of Number of Endmembers Using p-norm Based Pure Pixel Identification Algorithm[J]. IEEE Trans. Geosci. Remote Sens. 2013, 51(5): 2753-2769.

[7] Li J, Bioucas-Dias J E M. MINIMUM VOLUME SIMPLEX ANALYSIS A FAST ALGORITHM TO UNMIX HYPERSPECTRAL DATA[C]. Boston: 2008.

[8] Bioucas-Dias J M. A VARIABLE SPLITTING AUGMENTED LAGRANGIAN APPROACH TO LINEAR SPECTRAL UNMIXING: Proceedings of the First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing[Z]. Grenoble, France: 2009.

[9] Miao L, Qi H. Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization[J]. IEEE Trans. Geosci. Remote Sens. 2007, 45(3): 765-777.

[10] LIU Xue-Song, WANG Bin, ZHANG Li-Ming. Hyperspectral unmixing based on nonnegative matrix factorization[J]. J.Infrared Millim.Waves(刘雪松, 王斌, 张立明. 基于非负矩阵分解的阵分解的高光谱遥感图像混合像元分解. 红外与毫米波学报),2011, 30(1): 27-32, 54.

[11] Qian Y, Jia S, Zhou J, et al. Hyperspectral Unmixing via L12 Sparsity-Constrained Nonnegative Matrix Factorization[J]. IEEE Trans. Geosci. Remote Sens. 2011, 49(11): 4282-4297.

[12] Lu X, Wu H, Yuan Y, et al. Manifold Regularized Sparse NMF for Hyperspectral Unmixing[J]. IEEE Trans. Geosci. Remote Sens. 2013, 51(5): 2815-2826.

[13] Greer J B. Sparse demixing of HyperSpectral Images [J]. IEEE Trans. Image Process. 2012, 21(1): 219-228.

[14] Lee D D, Seung H S. Algorithms for Non-negative Matrix Factorization[C]. Cambridge: MIT Press, 2000.

[15] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. NATURE. 1999, 401(21): 788-791.

[16] Donoho D L, Stodden V C. When does non-negative matrix factorization give a correct decomposition into parts[C]. MIT Press, 2004.

[17] Heinz D C, Chang C. Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in Hyperspectral Imagery[J]. IEEE Trans. Geosci. Remote Sens. 2001, 39(3): 529-545.

[18] Bioucas-Dias J M, Nascimento J M P. Hyperspectral Subspace Identification[J]. IEEE Trans. Geosci. Remote Sens. 2008, 46(8): 2435-2445.

[19] Hoyer P O. Non-negative matrix factorization with sparseness Constraints[J]. Journal of Machine Learning Research. 2004, 5: 1457-1469.

[20] Clark R N, Swayze G A. Evolution in imaging spectroscopy analysis and sensor signal-to-noise: An examination of how far we have come[C]. The 6th Annual JPL Airborne Earth Science Workshop, 1996.

[21] Ambikapathi A, Chan T, Ma W, et al. Chance Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing[J]. IEEE Trans. Geosci. Remote Sens. 2011, 49(11): 4194-4209.

汤毅, 万建伟, 许可, 王玲. 地物空间分布特性的高光谱遥感图像解混算法[J]. 红外与毫米波学报, 2014, 33(5): 560. TANG Yi, WAN Jian-Wei, XU Ke, WANG Ling. Hyperspectral unmixing based on material spatial distribution characteristic[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 560.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!